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Abstract

Despite the widespread use of graphs in empirical research, little is known about readers’ ability to
process the statistical information they are meant to convey (“visual inference”). In this paper, we eval-
uate several key aspects of visual inference in regression discontinuity (RD) designs by measuring how
well readers can identify discontinuities in graphs. First, we assess the effects of graphical representation
methods on visual inference, using randomized experiments crowdsourcing discontinuity classifications
with graphs produced from data generating processes calibrated on datasets from 11 published papers.
Second, we evaluate visual inference by both experts and non-experts and study experts’ ability to predict
our experimental results. We find that experts perform comparably to non-experts and partly anticipate
the effects of graphical methods. Third, we compare experts’ visual inference to commonly used econo-
metric procedures in RD designs and observe that it achieves similar or lower type I error rates. Fourth,
we conduct an eyetracking study to further understand RD visual inference, but it does not reveal gaze
patterns that robustly predict successful inference. We also evaluate visual inference in the closely related
regression kink design.
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1 Introduction

“Few would deny that the most powerful statistical tool is graph paper.”

— Geoffrey S. Watson (1964)

Graphical analysis has become increasingly prevalent in empirical research. But despite the growing

appreciation for the role of data visualization, there is little research on readers’ ability to process the statis-

tical information graphs are meant to convey (visual statistical inference or visual inference per Majumder,

Hofmann and Cook, 2013), especially in the empirical applications where graphs are most commonly used.

In this paper, we evaluate the performance of visual inference in the regression discontinuity design

(RDD or RD design). Common practices in applying RDD today perhaps best embody the spirit of Watson’s

quote above, with graphs playing a central role in the implementation of the design. The popularity of RDD

in the modern causal inference toolkit also makes it an important setting to study visual inference.

The key RD graph plots the bivariate relationship between outcome variable Y and running variable X

and is meant to display a discontinuity (or lack thereof) in the underlying conditional expectation function

(CEF) as X crosses a policy threshold. Influential practitioner guides by Imbens and Lemieux (2008) and

Lee and Lemieux (2010) recommend creating this graph by dividing X into bins, computing the average of

Y within each bin, and generating a scatter plot of these Y -averages against the midpoints of the bins.1

We measure the performance of visual inference by studying whether people presented with variations

of this key graph can correctly identify the existence or absence of a discontinuity at the policy threshold.2

We must address three conceptual and practical questions in this endeavor. First, because we can construct

many different RD graphs based on the same data, how do graphical representation techniques affect visual

inference? Second, as readers may have different abilities, whose visual inference should we evaluate? And

third, what benchmark should we use to judge the adequacy of visual inference?

To address the first question, we build on seminal work by Cleveland and McGill (1984) and conduct

1The procedure can be thought of as plotting Nadaraya-Watson nonparametric estimates (named after Nadaraya, 1964 and
Watson, 1964) of the CEF E[Y |X = x] at various values of x, with the width of the bins as a key tuning parameter of the graph.

2RD graphs may serve other purposes beyond conveying the existence/magnitude of a discontinuity in the underlying conditional
expectation function at the policy threshold. For example, Lee and Lemieux (2010) recommend practitioners also use RD graphs
i) to assess regression specifications and ii) to look for discontinuities away from the policy cutoff. Exercise i) can be viewed as
reconciling visual and econometric inferences on the discontinuity, which requires reliability of visual inference. The main utility
of ii) is to inform the reader, under implicit global homogeneity assumptions, whether to believe the existence of a discontinuity
at the policy threshold. Therefore, we view the most important purpose of an RD graph as accurately conveying discontinuity
existence/magnitude at the policy threshold. Although we largely focus on visual inference on the existence of discontinuities, we
do study magnitude perception as well.
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a series of randomized experiments to examine how different graphical parameters affect visual inference

in RD.3 We present participants with RD graphs produced from data generating processes (DGPs) based

on microdata from 11 published papers in the American Economic Review, American Economic Journals,

Econometrica, and Journal of Political Economy and ask them to identify the existence or absence of a

discontinuity in each graph. Respondents are randomized into different treatment arms, and participants

in each treatment arm are shown graphs produced with particular graphical parameters such as small bin

widths, evenly-spaced bins, etc.

There is limited research on how to choose these parameters in practice. For example, Calonico, Catta-

neo and Titiunik (2015) propose two bin width selectors: one that minimizes the integrated mean squared

error (IMSE) of the bins, resulting in fewer, larger bins, and another that mimics the variability of the un-

derlying data (mimicking variance or MV), which leads to more, smaller bins.4 While both proposals are

principled ways of setting a graphical parameter to satisfy an econometric criterion, practitioners are left

with little basis to choose between them. Moreover, a host of other choices over graphical parameters re-

mains with little guidance from the literature, such as including smoothed regression lines on top of the

binned scatter plot, adding a vertical line to indicate the policy threshold, and choosing the axis scales.

By comparing the rates at which respondents correctly classify discontinuities across treatment arms,

we can assess the pros and cons of different graphical parameters, which informs best practices in RD

visual representation. We find that certain graphical parameters such as bin width and imposing smoothed

regression lines create important tradeoffs between type I error (incorrectly identifying a discontinuity when

there is none) and type II error (incorrectly identifying the absence of a discontinuity when there is one)

rates. Relative to IMSE bins and imposing fit lines, using MV bins and not including the fit lines tend to

decrease type I error rates but increase type II error rates.

To address the second question in evaluating visual inference and to assess how our estimates generalize

across experience levels, we compare the performance of non-experts in our randomized experiments (re-

cruited through the Cornell University Johnson College’s Business Simulation Lab) with the performance

of experts in fields that often employ RD designs. We find that the two groups perform comparably and are

3Cleveland and McGill (1984) put forward theoretical rankings of graphs that utilize different perception types and experimen-
tally test the predictions. The paper also settles a debate regarding the relative merits of divided bar charts and pie charts in the
Journal of American Statistical Association (Eells, 1926; Croxton, 1927; Croxton and Stryker, 1927; Von Huhn, 1927).

4In their concluding remarks, Calonico, Cattaneo and Titiunik (2015) recommend their derived bin width selectors be used as
benchmarks while encouraging researchers to experiment with alternative bin width choices. See also Chapter 3 of the recent guide
to practice by Cattaneo, Idrobo and Titiunik (2019).
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similarly affected by graphical methods. In the spirit of DellaVigna and Pope (2018), we also test whether

experts are able to predict the graphical parameters that result in the highest rate of visual inference success

by non-experts. We find that experts only partly anticipate the aforementioned tradeoffs from bin widths

and fit lines.

Third, as a benchmark for the performance of visual inference, we compare the type I and type II error

rates of our crowdsourced discontinuity/kink classifications with those from inference based on econometric

estimators at the 5% (asymptotic) level. These comparisons confirm that the graphical representation of RD

designs is a valuable tool for empirical analysis. We find that visual inference on graphs generated with

methods leading to the lowest type I error rates performs very similarly to the Armstrong and Kolesár

(2018) RD inference procedure (henceforth AK). RD visual inference achieves lower type I error rates than

tests based on the Imbens and Kalyanaraman (2012) and Calonico, Cattaneo and Titiunik (2014) estimator

(henceforth IK and CCT, respectively), but the two procedures exhibit considerable power advantages.

We also evaluate visual inference in the closely related regression kink design (RK design or RKD)

and similarly address the three questions above. First, we use an analogous experimental approach to study

graphical representation and additionally test the effects of visualization methods specific to RKD, namely

plotting detrended outcomes as in Lee et al. (2019) and plotting derivative estimates by adapting the gener-

alized bin selector from Cattaneo, Farrell and Feng (Forthcoming). Like in RD, we find similar tradeoffs in

the choice of bin width, while plotting detrended outcomes decreases type II error rates and plotting deriva-

tive estimates leads to poor visual inference performance. Second, we document the performances of both

experts and non-experts and observe that experts attain similar type I error rates but lower type II error rates

compared with non-experts. Third, both experts and non-experts struggle to differentiate kinks from smooth

peaks, which the default CCT inference procedure is better able to handle. However, the latter has a serious

power disadvantage even at the largest kink magnitude we test. The lack of power can be alleviated by using

conventional inference methods based on a local linear or quadratic estimator in conjunction with a larger

bandwidth, consistent with the findings by Card et al. (2017).

We also examine the joint distribution of visual and econometric discontinuity/kink tests to assess their

complementarity. We find evidence that visual and econometric inferences commit similar type II errors in

RDD, but the association is weaker for type I errors and in RKD. This finding suggests that visual inference

can effectively complement econometric inference in many situations.

Finally, to understand the mechanisms behind successful visual inference and investigate avenues for
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its improvement, we conduct an eyetracking study with both expert and non-expert participants. We track

participants’ visual attention to different parts of RD graphs while they form their discontinuity assessments.

Although the six experts outperform the nine non-experts in this small lab study, their eyegaze patterns are

similar along most dimensions, and various prediction exercises do not reveal eyegaze measures that robustly

correlate with visual inference success. We tentatively conclude that the processing of visual signals, as

opposed to their acquisition through ocular movements, is likely the driver of performance heterogeneity in

visual inference.

This paper makes the following contributions. It is the first paper to evaluate visual inference and graph-

ical representation practices in two widely used quasi-experimental research designs in economics and the

social sciences by drawing from four strands of the statistics literature that study the choice of graphical

parameters (e.g. Calonico, Cattaneo and Titiunik, 2015), their effects on visual inference (e.g. Cleveland

and McGill, 1984), the evaluation of visual inference through comparison with econometric inference (e.g.

Majumder, Hofmann and Cook, 2013), and the ocular process underlying visual inference via eyetracking

technology (e.g. Hofmann et al., 2012). This is also the first paper within economics that uses lab experi-

ments to study empirical methods, a new paradigm that can be applied to other important areas (see Section

5 for more details). Although we primarily use the influential IK, CCT, and AK inference procedures as

benchmarks to evaluate visual inference performance, we can also think of this exercise as evaluating these

econometric inference procedures with visual inference performance as the benchmark. In particular, using

11 DGPs calibrated to RD and RK microdata allows us to carry out a more comprehensive and empirically

relevant evaluation of econometric inference procedures than econometric studies that typically rely on two

or three DGPs. The results from this paper lead to practical takeaways in both graphical representation

and econometric inference in RD and RK designs. In terms of graphical representation, if the objective is

to minimize type I error rates in RD visual inference, which is consistent with the spirit of size control in

econometric inference, one should use small bins with no fit lines as opposed to large bins with fit lines,

while other parameters such as bin spacing (equally spaced versus quantile spaced), axis scaling and the

presence of a vertical line indicating the policy threshold do not appear to matter. For RK, one may consider

plotting detrended outcomes, while plotting derivative estimates is not recommended. In terms of econo-

metric inference, we can adjust the critical t-values when applying the IK and CCT RD procedures to 2.46

and 2.28, respectively, which decreases their type I error rates to that of the experts (just below 8%) while

retaining their power advantages within the set of DGPs we test. Lastly, this paper adds to the literature on
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expert judgments (e.g. Camerer and Johnson, 1997) and expert forecasts of research results (e.g. Sanders,

Mitchell and Chonaire, 2015). Our finding that experts only partly anticipate our experimental results un-

derscores the value of empirically evaluating visual inference and providing evidence-based guidance on

graphical methods.

The paper is organized as follows. In Section 2, we present a conceptual framework and formalize

the measure we use to judge visual inference across different graphical representation methods and against

econometric inference procedures. In Section 3, we discuss the design of our experiments and studies,

including the graphical parameters we test, the specification of the data generating processes, the design of

the online survey, and the setup of our eyetracking study. Section 4 presents the empirical results. Section 5

concludes.

2 Conceptual Framework

In this section, we construct a conceptual framework for evaluating visual inference with different graphical

techniques, between expert and non-expert populations, and in comparison to econometric inference. We use

the type I and type II error rates to measure the performance of an inference method. While the definitions

of type I and type II error rates are standard in statistical inference, we need to be precise about them in the

context of visual inference. As described above, we ask participants to view RD graphs and classify them

as having a discontinuity or not at a specified threshold. The type I error rate for RD visual inference is the

fraction of continuous graphs participants incorrectly classify as having a discontinuity, and the type II error

rate is the fraction of discontinuous graphs incorrectly classified as being continuous. Below, we formalize

the parameters being estimated by these error rates in our studies and discuss the statistical properties of the

estimators.

First, we introduce the following notation, with our exposition focusing on the RDD case (the conceptual

framework for RKD is analogous). The vector γ denotes a combination of graphical parameters: bin width,

bin spacing, imposing polynomial fit lines, including a vertical line, axis scaling, etc. Each entry of γ

represents the value of a particular graphical parameter. In our experiments, we randomly assign participants

to view graphs generated with certain values of γ .

The combination (g,d) denotes the probability model underlying an RD dataset. g encompasses four

elements: i) the distribution of the running variable X ; ii) the conditional expectation function E[Ỹ |X = x]
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which is continuous at x = 0; iii) the distribution of the error term u where Ỹ ≡ E[Ỹ |X = x] + u; iv) the

sample size N. The letter d denotes the discontinuity level, that is, Y = Ỹ + d · 1[X>0] (which implies that

E[Y |X = x] = E[Ỹ |X = x]+d ·1[X>0]). Intuitively, g specifies everything in the probability model except for

the discontinuity, including the shape of the conditional expectation function. The discontinuity then results

from shifting the “right arm” of the smooth function E[Ỹ |X = x] by d. Typically, the (g,d) combination is

jointly referred to as the “data generating process,” but we separate out the discontinuity level d and call g

the DGP for ease of exposition.

We think of each (bivariate) RD dataset as a realization from the probability model (g,d). Realizations

are indexed by ε , which can be thought of as the seed in statistical software. Taken together, the triplet

(g,d,ε) uniquely determines an RD dataset, the quadruplet (γ,g,d,ε) determines an RD graph, and we call

(γ,g,d) a “meta-graph.”

When presented with the same RD graph, different participants may reach different conclusions as to

whether a discontinuity exists. For example, some participants may be more skilled than others at classifying

a discontinuity because they have received more training in statistics, have more experience with RD graphs,

or otherwise have superior ability. Participants may also reach different conclusions because of different

intrinsic “p-value cutoffs,” as some may be more likely than others to classify any given graph as having a

discontinuity. We use φ to capture these human characteristics that affect graph perception, whether or not

they are observed by us.

The probability that a participant with characteristics φ reports that a discontinuity exists in RD graph

(γ,g,d,ε) is denoted by p̃(γ,g,d,ε,φ). From casual observation, we know that the same participant may

be influenced by idiosyncratic elements not encapsulated in φ and classify the same graph differently on

different days. The probability formulation p̃ allows these factors to affect visual inference.

We now define the type I and type II error probabilities which we use to gauge participant performance.

First, averaging p̃ over realizations ε and participant characteristics φ leads to the quantity

p(γ,g,d)≡ Eε,φ [p̃(γ,g,d,ε,φ)].

This is the probability that a randomly chosen participant reports a discontinuity in the meta-graph (γ,g,d).

A high value of p indicates a high classification error probability for DGP g when the true discontinuity d is

zero (type I error), but a low classification error probability when d is nonzero (type II error). Formally, the
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DGP-specific or g-specific type I and type II error probabilities for graphical parameter γ are defined as:

g-specific type I error probability: p(γ,g,0)

g-specific type II error probability: 1− p(γ,g,d) for d 6= 0.

Conceptually, we can further average p(γ,g,d) over the space of DGPs G to arrive at the overall discon-

tinuity classification probability for graphical technique γ:

p̄(γ,d)≡ Eg∈G [p(γ,g,d)].

Correspondingly, the overall type I and type II error probabilities are defined as

overall type I error probability: p̄(γ,0)

overall type II error probability: 1− p̄(γ,d) for d 6= 0.

In this paper, we design experiments to estimate the type I and type II error probabilities as defined

above. For each meta-graph (γ,g,d), we randomly sample M participants and realizations. Participant i is

shown RD graph (γ,g,d,εi), where i and εi both take on values in the set {1, ...,M}, and is asked to assess

the presence of a discontinuity. Let the binary variable Ri(γ,g,d,εi) denote participant i’s discontinuity

classification, which equals one if the participant reports a discontinuity at the policy threshold. If the M

participants and realizations come from simple random sampling from the distributions of φ and ε , then the

following assumption holds:

Assumption 1. For a given DGP g, the Ri(γ,g,d,εi)’s are i.i.d. with E[Ri(γ,g,d,εi)] = p(γ,g,d).

A natural estimator for p(γ,g,d) is the sample average:

p̂(γ,g,d) =
1
M ∑

i
Ri(γ,g,d,εi).

In Proposition 1 in Appendix A.1, we state the distribution of p̂(γ,g,d) and show the estimator to be unbiased

and consistent as M→ ∞ for p(γ,g,d) under Assumption 1.

To estimate the overall probability p̄(γ,d), we can collect J DGPs and present graphs generated with

discontinuity d for each DGP g j ( j = 1, ...,J) to a distinct group of M participants for a total of M · J

participants and visual discontinuity classifications.

Assumption 2. The DGP g j’s are randomly sampled from G .
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A natural estimator for p̄(γ,d) is

ˆ̄p(γ,d)≡ 1
J ∑

j
p̂(γ,g j,d)

=
1

M · J ∑
i, j

Ri(γ,g j,d,εi),

the average of discontinuity classifications across the M · J classifications. In Proposition 2 in Appendix

A.1, we state the distribution of ˆ̄p(γ,d) and show the estimator to be unbiased and consistent (as J→∞) for

p̄(γ,d) under Assumptions 1 and 2.

Similar to the parameters introduced above, we can define the type I and type II error probabilities of the

inference procedure based on a given econometric estimator, θ̂ . However, we need to make two adjustments.

First, γ is no longer an argument in these expressions because we directly apply θ̂ to the microdata (g,d,ε).

Second, we need to specify the level of the testing procedure based on θ̂ , which we set to 5%, the prevailing

standard in empirical studies.

Let the binary variable R
θ̂
(g,d,ε) indicate whether the procedure based on θ̂ rejects the null of zero

discontinuity in the data set (g,d,ε). The corresponding type I and type II error probabilities are defined as:

g-specific type I error probability: p
θ̂
(g,0)≡ Eε [Rθ̂

(g,0,ε)]

g-specific type II error probability: p
θ̂
(g,d)≡ 1−Eε [Rθ̂

(g,d,ε)] for d 6= 0

overall type I error probability: p̄
θ̂
(0)≡ Eg,ε [Rθ̂

(g,0,ε)]

overall type II error probability: p̄
θ̂
(d)≡ 1−Eg,ε [Rθ̂

(g,d,ε)] for d 6= 0,

with the estimators p̂
θ̂
(g,0), p̂

θ̂
(g,d), ˆ̄p

θ̂
(0), and ˆ̄p

θ̂
(d) being their sample analogs obtained from the

datasets used to generate the graphs in our experiments. We can derive the analogous statements to Proposi-

tions 1 and 2 in Appendix A.1 that establish the distribution, unbiasedness, and consistency of the estimators

ˆ̄p
θ̂
(g,d) and ˆ̄p

θ̂
(d), but they are omitted for conciseness.

For brevity of terminology, we refer to the type I error probabilities p(γ,g,0) and p̄(γ,0) as the DGP-

specific and overall sizes of visual inference, and one minus the type II error probabilities—p(γ,g,d) and

p̄(γ,d)—as the powers. Similarly, we refer to p
θ̂
(g,0) and p̄

θ̂
(0) as the sizes of econometric inference

based on the estimator θ̂ , and p
θ̂
(g,d) and p̄

θ̂
(d) as its powers.

This nomenclature is consistent with conventions in the statistics literature except for calling the overall

type I error probabilities p̄(γ,0) and p̄
θ̂
(0) size. Conventionally, size is defined as the supremum of the type
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I error probability over the set of DGPs, whereas p̄(γ,0) and p̄
θ̂
(0) are averages. We choose not to adopt

the conventional size definition for two reasons. First, finding the DGP that results in the highest type I error

probability for visual inference is difficult. Second, that DGP may be very different from typical DGPs that

underlie actual RDD datasets, and adopting the conventional size definition may be overly conservative.

In subsequent sections, we empirically trace out ˆ̄p(γ,d) and ˆ̄p
θ̂
(d) as functions of d, which are power

functions that concisely summarize the type I and type II error probabilities (for testing the null hypothesis of

zero discontinuity when the true discontinuity is d and the DGP is randomly chosen from the set of DGPs).

We evaluate visual inference by comparing its power functions ˆ̄p(γ,d) across γ , between expert and non-

expert populations, and against econometric inference power functions ˆ̄p
θ̂
(d) for various θ̂ . We discuss the

implementation of the inference procedure on the differences ˆ̄p(γ1,d)− ˆ̄p(γ2,d) and ˆ̄p(γ,d)− ˆ̄p
θ̂
(d) when

we present our empirical results in Section 4, as its details depend on the design of our experiments.

3 Description of Experiments and Studies

3.1 Graphical Parameters Tested

In this study, we test the effects of five RD graphical representation parameters as part of γ: bin width,

bin spacing, parametric fit lines, vertical lines at the policy threshold, and y-axis scaling. Additionally, we

test two RK-specific parameters: detrending the data with a global linear regression prior to creating the

graph and plotting estimated first derivatives instead of the levels of the data, so that a kink appears as a

discontinuity. We discuss each of these treatments in detail below.

The most studied graphical parameter in RD is the width of each bin in the binned scatter plot. The first

class of bin width selection algorithms comes from Lee and Lemieux (2010): start from a particular number

of bins, double that number, test whether the additional bins fit the data significantly better, and repeat until

the test fails to reject the null. Calonico, Cattaneo and Titiunik (2015) propose two bin width selection

algorithms based on different econometric criteria. The first and more in line with the convention of the

nonparametric regression literature is the bin selector that minimizes the IMSE of the bin-average estimator

of the CEF, where the resulting number of bins increases with the sample size n at the rate n1/3. For their

second bin selector, the MV selector, Calonico, Cattaneo and Titiunik (2015) state that they “choose the

number of bins so that the binned sample means have an asymptotic (integrated) variability approximately

equal to the amount of variability of the raw data.” The number of bins increases with the sample size more
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quickly, at the rate n/ log(n)2. The IMSE-optimal bin width selects fewer bins, and hence has larger bin

widths, than the MV algorithm. In addition to these two algorithms, Calonico, Cattaneo and Titiunik (2015)

provide an interpretation for any number of bins as the output of a weighted IMSE-optimal algorithm from

weights that can be derived simply, and we use this result later to extend the MV bin selection algorithm to

plotting estimated derivatives in RKD. We describe the IMSE and MV algorithms in more detail in Appendix

A.2.5

Although the standard approach in practice is to adopt evenly spaced bins, with almost 98% of papers

using them in our literature review of more than 100 published RDD and RKD studies, this method has

drawbacks in that the resulting bins may contain vastly different numbers of observations, or even none

at all. This can happen when the distribution of the running variable is far from uniform. As a remedy,

Calonico, Cattaneo and Titiunik (2015) also propose quantile-spaced bins where each bin contains the same

number of observations instead of each bin having the same width. Both spacings support IMSE and MV

bin selectors, and we test each.

Following the suggestions by Imbens and Lemieux (2008) and Lee and Lemieux (2010), RD and RK

graphs frequently feature parametric fit lines and a vertical line at the treatment threshold. Both papers

suggest fit lines improve “visual clarity” by approximating the conditional expectation functions, and the

default in the popular rdplot command by Calonico, Cattaneo and Titiunik (2015), for example, uses

piecewise global quartic regressions on each side of the policy threshold. Seven of the 11 RDD papers with

which we calibrate our DGPs include fit lines. For these papers, we use fits of the same polynomial order as

in the source graph (one paper uses local polynomial smoothing, and we use the polynomial degree that best

matches the fit lines). In the remaining four cases, our team unanimously decides on the most appropriate

fit. The presence of a vertical line at the cutoff is designed to visually separate observations above and below

that cutoff. We test all combinations of these two treatments except for including the fit line and not having

a vertical line, which is used infrequently in the literature (our literature review shows that less than 10% of

papers use this combination).

The motivation for rescaling graph axes comes from Cleveland, Diaconis and McGill (1982), who note

that correlations on scatter plots seem stronger when scales are increased (see Figure A.1 for an example).

We use two axis scaling options in our experiments. First is the default output returned by Stata 14. Second,

5In our investigation, the Lee and Lemieux (2010) algorithms typically lead to bin numbers in between the IMSE and MV
selectors, and generally closer to those of IMSE. Therefore, we only test the IMSE and MV selectors in our experiments.
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we double that range by recording the range of the y-variable from the default graph, increasing the bounds

by 50% of the original range in each direction, and passing those bounds to the graphing commands, result-

ing in a graph where the data are condensed along the vertical axis. We do not manipulate the scale of the

x-axis because our survey of the literature suggests that this is not a common adjustment. A related decision

researchers encounter is the range of the running variable to use in producing graphs: should she use the

entire dataset or only a subsample close to the policy threshold? We do not test this margin of adjustment

in our experiments due to the difficulty in generalizing the findings from such an exercise. Suppose we find

that selecting 50% of the observations closest to the threshold improves visual inference, should researchers

“chop” the sample they are already planning to use? And after doing so, will it be beneficial to chop again?

One could argue for testing the effect of using the full sample versus the subsample falling within the IK or

CCT bandwidth (see Section 4.4.1 below for review), but these bandwidths themselves depend on the full

sample—the first step in bandwidth calculation is a (semi-)global regression—and it is not even clear how

we should define the “full” sample. In fact, some of the replication data used for our DGP calibration are

already subsets of a full sample.

There are many other RD graphical parameters we do not test in our experiments. One of them is plotting

confidence bands around the binned averages or fit lines. However, confidence intervals are too complex to

explain to the non-experts in our short tutorial without potentially affecting the way participants think about

the classification task itself, and therefore we do not experimentally test their effects on visual inference.

Because the moderate size of our expert pool makes it unsuited to randomized experiments, we refrain from

testing these particular graphical parameters.

The first of our RK-specific treatments is detrending the data. This is simply running a global linear

regression and plotting the residuals instead of the original data, as shown in Figure A.2. Plotting these

residuals may make kinks more visually apparent and is adopted by Lee et al. (2019).6

We test one new treatment that has not previously been used in practice: estimating and plotting local

first derivative estimates rather than the levels of the data. We follow Cattaneo, Farrell and Feng (Forth-

coming), who examine partitioning-based nonparametric regression and derive an IMSE-optimal number

of partitioning knots to estimate the level or derivatives of a CEF. As in conventional RD and RK plots,

the knots are determined separately on each side of the policy threshold with no overlap. Within each bin

defined by these knots, we run a linear regression, and for each bin, we plot the corresponding linear co-

6In principle, one could detrend by residualizing against any smooth function, but we stick to linear detrending for simplicity.
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efficient. A kink in levels then appears as a discontinuity in first derivatives, as in Figure A.3. Because

the MV bin selector does not apply to this setting, we instead extend the results from Cattaneo, Farrell and

Feng (Forthcoming) to approximate a small-width bin selector. For each of our RD datasets, we compute

the implied weights that justify the MV bin selector as weighted-IMSE-optimal, take the median value, and

use that weight for a weighted IMSE calculation of how many bins to use for the small bins treatment when

plotting estimated derivatives for RK.

Because the RKD DGPs we use are based on large administrative datasets, as is typical for RKD, both

bin selectors will generally select many more bins than in the RD setting. Using equally spaced MV bins

tends to result in many near-empty bins in the sparse tails of our datasets, as in Figure A.4, which likely

hinders kink perception at the policy threshold. Since these graphs never appear in papers implementing

RKD, we use quantile spacing for all kink graphs.

3.2 Creation of Simulated Datasets and Graphs

For both RDD and RKD, we specify data generating processes based on the actual data used in published

research. For the RDD components of our study, we randomly sample 11 from a set of empirical RD

papers published in the American Economic Review, American Economic Journals, Econometrica, Journal

of Business and Economic Statistics, Journal of Political Economy, Quarterly Journal of Economics, Review

of Economic Studies, and Review of Economics and Statistics, that have replication data available to create

our DGPs. We refer to these DGPs as RD DGP1-DGP11.

The calibration of each DGP g entails the specification of its four components: the distribution of the

running variable X , the continuous conditional expectation function E[Ỹ |X = x], the distribution of the error

term u, and the sample size N. We use the empirical distribution of the running variable from each of the

11 papers but normalize it to lie in [−1,1] with 0 representing the treatment cutoff. We also remove the

most extreme observations where |X | > 0.99, following Imbens and Kalyanaraman (2012) and Calonico,

Cattaneo and Titiunik (2014). For two papers which feature semi-discrete running variables, we add small

amounts of normal noise to the running variable to match the regularity conditions from Calonico, Cattaneo

and Titiunik (2015). To create a continuous CEF, we fit global piecewise quintics (still following Imbens

and Kalyanaraman, 2012 and Calonico, Cattaneo and Titiunik, 2014) and vertically shift the right arm. We

specify the distribution of the error term u as i.i.d. normal with mean zero and standard deviation σ , which

we set as the root mean squared error of the piecewise quintic regression. We use the same number of
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observations as the original paper minus any observations removed while trimming the data. Plots of the

resulting CEFs before we vertically shift their right arm to make them continuous are in Figure A.5. We

leave the full details of DGP specification to Appendix B.

Because the outcomes from the 11 papers are measured in different units, we specify discontinuity levels

d as multiples of σ . d takes on 11 values: 0,±0.1944σ ,±0.324σ ,±0.54σ ,±0.9σ ,±1.5σ . We include

d = 0 in order to measure type I error rates. We choose the upper bound |d|= 1.5σ based on our own visual

judgment: it represents the point at which we expect every reasonable person to say a graph from any of our

11 DGPs features a discontinuity. The nonzero magnitudes of d are equally spaced on the log scale. We use

the log scale as opposed to linear to generate more graphs with smaller discontinuities, which are harder to

detect, in order to better trace out the shape of the power functions.

Our discontinuity magnitudes are similarly distributed to those observed in the main outcome graphs in

our literature review. The average absolute value of the t-statistics in our datasets from piecewise quintic

regressions is 5.0 with a standard deviation of 5.3, compared to the observed mean of 3.9 with a standard

deviation of 6.4. If we instead compare the distributions of the absolute value of the discontinuity divided

by the control magnitude (the left intercept of the CEF), the means are similar, 1.3 in our datasets and 1.9 in

the field, while our standard deviations are somewhat smaller at 2.2 compared to 7.7.

In the RKD case, most studies use restricted administrative datasets, resulting in a lack of publicly

available replication microdata. Therefore, we fit 11 DGPs based on three studies: Card, Lee and Pei

(2009), Card et al. (2015c), and Card et al. (2015a). The DGPs are fitted on seven subsamples: the reduced-

form sample of Card, Lee and Pei (2009), the top and bottom kink first-stage and reduced-form samples of

Card et al. (2015c), and the pre- and post-recession reduced-form samples of Card et al. (2015a). Although

the latter two papers use restricted data from Austria and Missouri respectively, a member of our team has

specified the DGPs from past work on these projects.

The process for calibrating RK DGPs is similar to that for RD. Data confidentiality creates a complica-

tion in that the actual data cannot be shared among team members, so instead of using the X variable from

the actual data, the running variable used to create each graph is sampled from an estimated kernel density.

For each of the seven samples, we obtain a CEF from piecewise quintic regressions just like for their RD

counterparts. The only difference is that we impose continuity as implied by the continuous treatment rule

and the economic model in Card et al. (2015c). In addition, for each of the four subsamples of Card et al.

(2015c), we follow the Monte Carlo simulations of Card et al. (2015d) and Card et al. (2017) and specify
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an additional CEF from a global quintic regression. We create these four smooth DGPs out of concern that

using only the other seven may be too favorable to visual inference.7 We plot all resulting CEFs in Figure

A.6. The CEFs for RK DGPs 5, 6, 9, and 10 are the global quintics, while the rest are piecewise quintics.

We create CEFs with different kinks by rotating the right arm of the unkinked CEF, and we specify the

kink magnitude as multiples of ξ , which denotes in radians the asymptotic standard deviation of the angle

estimator between the left and right arms of the CEF from a piecewise quintic regression. We use nine dif-

ferent kink levels: 0,±0.1944ξ ,±0.324ξ ,±0.54ξ ,±0.9ξ . Similar to our RD DGPs, we also use a normal

distribution for the error term u, but the specification of its standard deviation is more complex. We discuss

in detail the calibration of our RK DGPs in Appendix B.

As argued in Section 2, we want our DGPs to be representative of the data from their corresponding

papers. To ensure this is indeed the case, we adapt the lineup protocol from Buja et al. (2009) and Majumder,

Hofmann and Cook (2013) and evaluate how well our DGPs approximate the actual datasets from which

we construct them.8 The lineup protocol uses visual inference to conduct hypothesis testing. In our case,

we test the null hypothesis that the original datasets come from the calibrated DGPs. To do this, we present

one graph of the original data and 19 graphs from datasets drawn from the corresponding DGP. The goal

is to identify the true dataset by choosing the graph that least resembles the others. If one does not choose

the original graph, then we cannot reject the null hypothesis, under which the probability of identifying

the graph produced from the original data (or the type I error probability) is 5% (1/20) for a single reader.

For our lineup protocol, each graph is a binned scatter plot using the MV bin selector. An example of the

combined plots is in Figure A.7, with the coordinates of the true graph in this footnote.9

Based on visual testing among the authors, we cannot identify the graph from the true data for eight out

of our 11 RD DGPs, which supports the idea that our DGPs approximate the original datasets well. For three

DGPs, however, there is an obvious difference, such as in Figure A.8. All three “fail” seemingly because

of the misspecification of the variance structure of the error term u. Recall that we specify u as being i.i.d.

across observations and homoskedastic. But in Figure A.8, for example, the running variable is time, and

7An RKD pilot (see Table A.2 for a detailed timeline) which only included graphs based on the seven piecewise quintic DGPs
had revealed both very low type I error rates and high power. However, we were concerned that not requiring participants to
distinguish between curvature and kinks at the policy threshold might be too advantageous to visual inference. To ensure a more
balanced comparison between visual and econometric inference, we added the four smooth global quintic DGPs.

8Because of confidentiality concerns with the RK microdata from Card et al. (2015c) and Card et al. (2015a), we do not present
lineups for the RK DGPs.

9The graph produced from data used in the original paper is in row −3 · 2+ 7 and column
√

4+5− 2. The rest are from our
DGP.
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there is positive serial correlation in the outcome. As a consequence, the outcome variability in the binned

scatter plot is understated when u is assumed to be i.i.d. Nevertheless, we adhere to the i.i.d. specification

because it is standard in Monte Carlo exercises to evaluate RD estimators and makes it straightforward to

implement the uniformly most powerful test in Section 4.

Another caveat of our DGP specification is that using quintic regressions can lead to overfitting. Some

of our graphs feature high variation across bins in the tails due to the sensitivity of the fitted piecewise

quintics. We follow the practice of Imbens and Kalyanaraman (2012) and Calonico, Cattaneo and Titiunik

(2014) in our DGP specification while acknowledging this potential drawback of the quintic specification.

These caveats notwithstanding, the lineup protocol offers a novel and transparent method to evaluate DGP

specifications, and it is because of its usefulness that we can identify the aforementioned limitations at all.

3.3 Non-Expert Experiments

In our randomized experiments, we present non-expert participants with binned scatter plots made from our

DGPs and ask them to classify the graphs as having a discontinuity/kink or not. We conduct five phases of

computer-based experiments online through Cornell University Johnson College’s Business Simulation Lab.

Our subject pool consists of current and former Cornell University students, Cornell staff, and non-student

local residents with an expressed interest in focus groups or surveys. Although these educated laypeople

are not the primary audience for academic research, RD graphs are sufficiently transparent that they are

commonly featured in popular media articles in publications such as The New York Times, The Washington

Post, and The Atlantic (Dynarski, 2014; Sides, 2015; Rosen, 2012), suggesting the participants in our sample

should be capable of interpreting the graphs.

Before beginning the experiment, participants watch a video explaining how the graphs are constructed

and see several examples of classifying graphs with and without discontinuities/kinks. We do not instruct

participants on how to make their decisions, e.g. whether only to look at points near the cutoff or to trace

out the CEF mentally. The video contains an attention check with a corresponding question later in the

experiment to ensure that subjects pay attention to the instructions. After the video, participants see a series

of example graphs with their solutions. As part of the tutorial instructions, we tell the participants explicitly

that all, some or none of the 11 graphs may feature a discontinuity/kink.

In each phase of the experiment, we present participants with a series of RD or RK graphs using data

generated as described in Section 3.2. In the RD experiments, participants see two graphs with zero discon-
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tinuities, one each of ±0.1944σ ,±0.324σ ,±0.54σ ,±0.9σ , and one of either 1.5σ or −1.5σ . Participants

see one graph from all 11 DGPs in a randomized order. We have up to 88 participants per treatment arm, and

every graph we generate is seen by only one participant. The setup is similar for RK, except we present each

participant with 11 graphs plotting levels of the data and another 11 graphs plotting estimated first deriva-

tives. For each graph, we ask participants whether they believe there is a discontinuity (or kink for RK) at

x = 0. To stimulate participant engagement and elicit participants’ confidence in their response, participants

can choose a bonus that is either based on a monetary wager which pays 40 cents if their judgment is correct

but nothing otherwise, or a fixed payment of 20 cents irrespective of their performance. Under this bonus

scheme, risk- or loss-averse participants will choose the fixed payment whenever their subjective probability

of being correct is close to 50% (see Appendix C.1.1 for details).

Because running an experiment with 25 = 32 RDD treatment arms is infeasible with our resources, we

conduct our experiment in phases, testing only a few treatments in each phase. To inform best practices in

graphical representation, we are mainly interested in the direction of the effects of graphical parameters, e.g.

whether using small bins increases or decreases type I error rates relative to using large bins. Therefore, we

assume that our graphical parameters do not have “qualitative interactions” (see Gail and Simon, 1985), i.e.

the direction of the effect of one parameter does not change with other parameters. For example, if small

bins decrease type I error rates relative to large bins when a vertical line is present at the policy cutoff, we

assume that it is also true in its absence. We can test this assumption on the two treatments that we interact

in each phase, and it appears to hold.

In Phase RDD1, we test both bin width and axis scaling options. In Phase RDD2, we test bin widths

and bin spacings. In Phase RDD3, we test imposing fit lines and a vertical line at the treatment threshold.

In Phase RKD, we test combinations of bin widths and detrending the data and separately test bin widths

for graphs of local derivatives. We list the graphical parameters we test and hold fixed for all experimental

phases in Tables A.1 and A.2.

For all RD phases, participants see 11 graphs generated with the same graphical parameters, and all

experimental comparisons are between subjects. For the RK phase, participants see 22 graphs, with 11

plotting levels and 11 plotting estimated derivatives. Consequently, we have a between-subjects design for

the RK graphical treatments of bin width and detrending Y , but a within-subject design for plotting levels

and derivatives.

Participants receive a base pay of $3 for being in the experiment and a bonus of 0, 20, or 40 cents per
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classification depending on the participant’s wager selection and whether they are correct. We do not give

participants real-time feedback but do report earnings and the total tally of correct classifications at the end

of the experiment after a short exit survey soliciting demographic information and comments. The study

takes participants approximately 15 minutes to complete.

All parts of this study are programmed in oTree (Chen, Schonger and Wickens, 2016) and pre-registered

at the Center for Open Science’s OSF platform (Korting et al., 2019b) and the AEA RCT registry (Korting

et al., 2019a).

3.4 Expert Study

In addition to our non-expert experiment, we conduct a study with researchers in economics and related

fields who work on topics that often employ RDDs and RKDs. We collect data at three technical social

science seminars and online by contacting members of the National Bureau of Economic Research in applied

microeconomic fields (aging, children, development, education, health, health care, industrial organization,

labor, and public) and Institute of Labor Economics (IZA) fellows and affiliates. In total, we have 143 expert

responses for RD and 48 for RK.10

This expert study allows us to answer two questions. First, does experience with RDDs and RKDs im-

prove classification accuracy (in terms of type I and type II error rates)? By comparing expert performance

to the classification accuracy of our non-experts, we can establish whether the results from our non-expert

sample generalize to experts. And second, can experts correctly predict which graphing options perform best

for our non-expert sample? This second question speaks to experts’ ability to predict which visualization

choices are most suited for interpretation by a lay audience. Since the success of a graphical technique ulti-

mately lies in the reader’s correct perception of graphs using it, it is important to understand whether experts’

intuition regarding the relative advantages and drawbacks of alternative representation choices aligns with

the evidence we find in practice. In related work on the ability of experts to predict non-expert performance,

DellaVigna and Pope (2018) find that economic experts are better than non-experts at estimating the effect

of alternative incentive schemes on performance in a real effort task, but perform similarly to non-experts in

terms of a simple ranking of incentive schemes.

Our expert study consists of two parts. The first is similar in structure to the non-expert experiment.

10We remove a total of six responses from participants who completed the survey more than once, did not provide a valid email
address for payment, or were not part of our recruited sample.
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Participants see a series of RD or RK graphs and are asked to classify them as having or not having a

discontinuity/kink. In order to assess the accuracy of point estimates in addition to binary classifications of

discontinuities, we also ask participants in the RD module for an estimate of the discontinuity magnitude

when they report a discontinuity. Due to sample size limitations, we do not randomize graphical treatments

in the expert study, and all participants see graphs with no fit lines, default axis scaling, and a vertical line

at the treatment threshold. All expert RD graphs use equally spaced small bins, except for one seminar

where participants see large bins, and all expert RK graphs use large bins with quantile spacing. Four

randomly selected participants receive a base payment of $450 plus a bonus payment of $50 per correct

discontinuity/kink classification. The bonus payment in the RD case does not depend on the accuracy of the

magnitude estimate.

The second part of the expert study asks about experts’ preferences and beliefs regarding non-expert

performance across alternative graphical parameters. We present experts with three discontinuity or kink

magnitudes: 0,0.54σ ,1.5σ for RD and 0,0.324ξ ,0.9ξ for RK. For each RD magnitude, we present four

graphs using the same underlying data, one for each combination of bin width and fit lines. We show graphs

from the DGP where visual inference performs most closely to the average over all DGPs. For RK, we

show only two graphs with both bin width options and without fit lines. We randomize graph treatment

order between participants. At each magnitude, we ask the experts to indicate which of the four (two)

treatment options they prefer and which of the four (two) treatment options they believe perform best and

worst in our non-expert sample. To evaluate the experts’ predictions about non-expert performance, we run

a supplemental phase RDD4 in which we test all four treatments simultaneously across subjects. This is not

necessary for RK, where we test all treatments in one phase.

3.5 Eyetracking Study

A followup to our observed performance differences across individuals is to ask why some people are better

at classifying discontinuities than others and whether visual patterns can predict performance. To answer

these questions, we conduct an eyetracking study through Cornell University’s Mobile Communication Lab.

Eyetrackers provide insights into cognitive processes by tracing participants’ eye patterns as they navigate

visual information. These eye patterns are typically differentiated into saccades (rapid eye movements) and

fixations (maintaining visual gaze on a single location). Fixations are believed to be a valid indicator for

attention during complex information processing tasks such as reading (Just and Carpenter, 1980; Rayner,
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1998) and have previously been used to study how physicians analyze electrocardiograms (Bond et al.,

2014), how children “read” bar graphs (Garcia Moreno-Esteva et al., 2017), and how alternative presenta-

tions of health messages online improve recall (Bol et al., 2016).

The structure of the eyetracking study is similar to that of our non-expert experiment, and both experts

and non-experts participate in the study. We recruit non-expert participants from the same Business Simula-

tion Lab subject pool. All non-expert subjects receive the same instructions and training as in the non-expert

experiment online before completing the classification task at a physical eyetracking terminal (see Appendix

C.3 for details). We recruit experts from a pool of experienced graduate students and faculty at Cornell Uni-

versity. Expert and non-expert participants receive participation fees of $10 and $5, respectively, plus 40

cents for each correctly classified graph. In total, we recruit 11 non-expert and six expert subjects.11

The eyetracking approach allows us to investigate the extent to which visual patterns predict participants’

correct classification of a graph. Similar to the RD phases of our primary experiment, we present subjects

with a series of 11 RD graphs, one for each DGP, but this time showing the same graphs in the same order to

all participants. We keep the set of graphs fixed because the visual patterns that lead to correct discontinuity

classification may vary from graph to graph, and due to the risk of visual fatigue affecting eye movements

over time, we also keep the same graph order between subjects.

We choose the 11 graphs based on information available when designing the eyetracking study. Specif-

ically, we had data from the first three phases of experiments on RD graphical parameters as well as expert

responses from two seminars. We saw the experts in these early samples attain both lower type I and type

II error rates than the non-experts, and we chose the discontinuity-DGP pairs based on the maximum dif-

ference in classification accuracy between experts and non-experts. The final set of 11 graphs features four

graphs with no discontinuity, three graphs with a discontinuity magnitude of 0.1944σ , two graphs with a

discontinuity magnitude of 0.324σ , and two graphs with a discontinuity magnitude of 0.54σ . Like those

shown to most of the participants in the expert study, all graphs have equally spaced small bins and default

Stata axis scaling with a vertical line indicating the policy threshold and no fit lines.

11We drop one non-expert participant from the sample because the participant’s calibration score was low, indicating poor quality
of eyetracking data.
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4 Results

4.1 RD Non-Expert Experiment Results

For each combination of graphical parameters in all phases of the regression discontinuity experiment, we

compute power functions based on participants’ classifications of graphs as having or not having a discon-

tinuity. Using notation from Section 2, a DGP-specific power function represents the estimates p̂(γ,g,d)

for graphical parameters γ and DGP g across different levels of discontinuity d. An overall power function

represents the estimates ˆ̄p(γ,d).

The intercept of a power function indicates the type I error rate or size as defined in Section 2. At all other

discontinuity magnitudes, the power function represents the proportion of graphs with discontinuities that

participants classify correctly, which can be interpreted as the statistical power in detecting the discontinuity

when the DGP is chosen uniformly randomly from the 11 possibilities. The ideal inference method has a

small intercept before quickly rising to high power. Plots of the overall and DGP-specific power functions

for each phase are in Figures 1 and A.9 respectively. The x-axis in these graphs is the magnitude of the

discontinuity divided by the DGP-specific σ . This normalization facilitates aggregation and comparisons

across DGPs, which then have six identical discontinuity magnitudes: 0, 0.1944, 0.324, 0.54, 0.9, and

1.5. Estimated treatment effects are in Tables A.3, A.4, and A.5. Because we effectively adopt stratified

randomization in the design of our experiments as described in Section 3.3, where each of the 11 strata is

determined by the DGPs seen for every discontinuity magnitude, we obtain these estimates by regressing

the participants’ responses on treatment indicators and strata fixed effects.

Phase RDD1 tests the four combinations of the bin width treatments (large IMSE-optimal bins and small

MV bins) with the y-axis scaling treatments (the default in Stata 14 and double that range). Comparing

power functions, the large bins have significantly higher type I error rates relative to the small bins. While

both small bin treatments lead to a size of approximately 5%, the large bins have a size of around 20% to

25%. The large bins have a power advantage over the small bins, but the treatments converge in power as

the discontinuity magnitude increases. In contrast to the bin width treatments, axis scaling has little effect

on participant perception. Based on this result, we use Stata’s default scaling for all subsequent phases.

In Phase RDD2, we again test the two bin width treatments, this time interacted with the two bin-spacing

treatments: even spacing and quantile spacing. Note that both the large bin with even spacing and small bin

with even spacing treatments appear in both Phases RDD1 and RDD2. With this design, we can gauge the
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stability of visual inference across repeated samples from the non-expert population, and it is encouraging

to see the results for these two treatments being virtually identical to those from Phase RDD1. Comparing

the power functions for these repeated treatments with their new quantile-spaced versions, we see that the

evenly spaced and quantile-spaced power functions are very similar. We conclude that bin spacing has a

small or null effect on visual inference for the DGPs we test.

Phase RDD3 tests three treatments: the inclusion of a vertical line at the treatment threshold with and

without polynomial fit lines and the omission of both the vertical line and fit lines. We find that the vertical

line at the cutoff makes little difference in perception. Fit lines, on the other hand, appear to increase

both size and power in this phase, in line with a common concern that they may be overly suggestive of

discontinuities.

Jointly, these three phases of experiments suggest that the presence of fit lines and the bin width choice

have the largest impact on visual perceptions of discontinuities. We therefore base our analysis of expert

preferences and expert predictions about non-expert performance on the interaction of these two treatments

and run a final phase of experiments, Phase RDD4, directly comparing the four possible treatment combi-

nations. Interestingly, while the effects of bin width choice are once again robust across phases, the effects

of fit lines are more muted in this phase. In particular, the treatment with small bin and fit lines has a size

of 0.052 in Phase RDD4 but only 0.175 in Phase RDD3. While this difference may be due to differences in

subject pools across phases (Phase RDD4 was run in a different academic year), this finding suggests that

we cannot conclude that fit lines unequivocally result in an increase in type I errors.

As an alternative to specifying the discontinuity as a multiple of σ , we also present overall and DGP-

specific power functions in Figures 2 and A.10 where the discontinuity levels along the x-axis have an

interpretation of being the t-statistics of the piecewise quintic discontinuity estimator. Specifically, instead of

having the x-axis in terms of d/σ , we rescale it as d/σ

√
(X ′X)−1

dd , where X is a regressor matrix containing

the 12 polynomial terms of the running variable for a piecewise quintic regression and the dd subscript

denotes the entry of the matrix corresponding to the discontinuity estimator. The denominator is the large-

sample standard error of the discontinuity estimator from a (correctly specified) piecewise quintic regression,

and the ratio represents the corresponding t-statistic. Because the rescaling results in a distinct set of six

discontinuity magnitudes for each DGP, we now have 66 discontinuity magnitudes. Therefore, we bin points

along the x-axis, and consequently, these power functions are not monotone, as the composition of DGPs

changes across bin points. The rescaling helps to answer the question: how large does the t-statistic need to
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be in order for readers of an RD graph to detect a discontinuity?12 We can provide an evidence-based answer

to this question: the power of visual inference approaches 0.8, i.e. 80% of the participants correctly report a

discontinuity, across all phases of our RD experiment as the t-statistic from the correctly specified regression

exceeds 4. However, as we see below, the t-statistic threshold of 4 is specific for detecting discontinuities,

and a much smaller threshold applies to kink detection.

4.2 RK Non-Expert Experiment Results

We conduct one phase of the non-expert experiment focusing on the regression kink design. Here we test

two separate sets of treatments. In the first set, we compare all combinations of IMSE and MV bin widths

with detrending and not detrending the data. Power functions based on the raw or detrended data are plotted

in Figure 3 with the treatment effect estimates in Table A.7. Type I error rates are universally high for

kinks, around 15% to 20%. Breaking the DGPs into the seven piecewise quintics and the four smooth global

quintics with peaks at x = 0 in Figure A.11 shows that the high type I error rate is driven by the smooth

DGPs. Small bins again decrease the type I error rate, but the effect is much smaller than for discontinuities

at about one percentage point. Detrending the data prior to plotting has positive effects on power while

maintaining a similar type I error rate.

The power functions from plotting the estimated first derivatives in the data and identifying a disconti-

nuity in them are also shown in Figure 3 with corresponding treatment effect estimates in Table A.8. Results

for this treatment are not compelling, with high rates of both type I and II errors. For the small bin treatment,

the size is above 20% and the power peaks at around 30%, while the large bin treatment’s size is almost 40%

and the power does not reach 70%. These power functions are dominated by the levels treatments, and we

advise against plotting estimated derivatives in RKD applications.

4.3 Expert Study Results

4.3.1 RD Expert Study Results

For the experts in our RD sample, we show most participants (95 out of 143) graphs with small bins, no fit

lines, even spacing, default y-axis scaling, and a vertical line at the policy threshold, which have the lowest

type I error rate in our non-expert experiment. We present the expert power functions and the non-expert

12This question was also posed by Kirabo Jackson via Twitter. https://web.archive.org/web/20191224214023/https:
/twitter.com/KiraboJackson/status/1074110061025419268
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power functions based on graphs generated with the same parameters in the left panel of Figure 4, and we

plot the differences between the power functions in Figure A.12. This figure also includes pointwise 95%

confidence intervals generated by applying the large sample approximation described at the end of Appendix

A.1 and by assuming independence between the experts and non-experts. The two groups perform similarly,

with experts having slightly worse size (approximately 8% to the non-expert 5%) and slightly greater power.

The only statistically significant differences are for the experts’ marginally superior powers at the 0.1944

and 0.324 discontinuities.

In addition to the aforementioned treatment, we show experts in one seminar pool (48 out of 143) graphs

using the large bins and no fit lines treatment. We compare them with non-experts under the same treatment

in the left panel of Figure 4, finding that the two groups perform similarly. Experts have a slightly worse

type I error rate than non-experts here, and both are well above the rates for experts and non-experts with

small bins. The expert and non-expert power functions are not statistically significantly different anywhere.

4.3.2 RK Study Expert Results

Experts in our RK sample see graphs with large bins, no fit lines, quantile spacing, and a vertical line at

the policy threshold. In addition to using quantile-spaced bins as mentioned in Section 3.1, we use only

large bins because on our kink datasets based on large administrative data, the small bin algorithm selects

almost 1,000 times more bins than the large bin algorithm, resulting in graphs that do not look like those that

commonly appear in RKD papers (for RD, the small bin algorithm only selects about 16 times more bins).

We compare their performance with that of non-experts in the same treatment in the right panel of Figure 4

and Figure A.13. Although there is virtually no size difference, experts have substantially better power for

moderately sized kinks.

4.3.3 Expert Preferences and Predicting Non-Expert Performance

For RD, we present a graph depicting experts’ preferences and beliefs about non-expert performance across

the four considered treatments in Figure A.14. When asked about graphing options for the main graph of

a paper that conveys the treatment effect, most experts report preferring small bins, usually with fit lines.

These results hold at all three discontinuity magnitudes considered, including no discontinuity. Experts’

predictions about the most effective treatments for non-experts tend to mirror their preferences. By a large

margin, experts believe small bins with fit lines to be the most efficacious treatment for non-experts at all
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discontinuity magnitudes. Conversely, most experts view large bins without fit lines least favorably in the

context of non-expert performance.

Comparing the expert predictions for RD to our experimental data from Phase RDD4, we find substantial

discordance for the effects of bin width choice on non-expert classification accuracy. The best- and worst-

performing treatments at each discontinuity magnitude have + and - signs, respectively, in Figure A.14. The

actual power functions are shown in Figure 1, and the ones based only on the DGP used in the example

graphs shown to experts are in Figure A.15. While a majority of experts correctly identifies the bin width

treatment with the best size control (i.e. most experts prefer small bins at the zero discontinuity level, either

with or without fit lines), there is also significant expert support for the large bin with fit lines treatment,

even when there is no discontinuity, which exhibits the greatest type I error rate in our sample. In addition,

experts fail to predict the type I vs type II error tradeoff presented by the bin width choice: most experts

expect large bins to perform worst even at large discontinuities, while we find this treatment arm has the

greatest power. Although in the actual power functions, the effects of bin width are much more pronounced

than the effect of fit lines, we find more expert disagreement regarding non-expert performance along this

dimension. We also find expert predictions to be similar whether their own visual inference performance is

above or below the median.

Figure A.16 shows experts’ personal preferences and beliefs about non-expert performance for RK

graphs with small bins and large bins, both without fit lines. For both themselves and the non-experts,

experts clearly prefer large bins at every kink magnitude. Experts pick only one of the three best performers

in the non-expert results in Figure 3, though differences between these treatments are generally smaller than

in the RD setting, making prediction more difficult.

4.4 Visual vs Econometric Inference

4.4.1 RD Visual vs Econometric Inference

In this section, we compare the performances of visual inference from our small bin expert sample with

econometric inference based on various RD estimators. For each estimator, we present graphs of both the

overall power functions and the difference between them. For a fair comparison, we base the estimators’

power calculations on their rejection decisions over the same set of datasets underlying the graphs seen by

the experts. That is, the estimators “see” the same data as the experts, preventing differences driven by
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variation in sampling from the same DGP.

As a benchmark, our first estimator comes from a correctly specified model: a global piecewise quintic

regression with homoskedastic standard errors. The power function for a 5% test based on this estimator

compared with human performance is presented in the left panel of Figure 5 with the differences between

them in Figure A.17. The midpoint of each vertical bar in Figure A.17 represents the difference between

point estimates from regressions of the inference decision on indicators for each discontinuity magnitude.

We compute confidence intervals for these differences by assuming independence between visual and econo-

metric inferences.13 We cluster the visual inferences at the participant level and the econometric inferences

at the DGP-seed level (there are 88 such combinations). The type I error rate is just under 8% for the ex-

perts and approximately 6.8% for the piecewise quintic, which is near 5% by design. The piecewise quintic

estimator has higher power, though the difference is only significant at the 0.324 discontinuity.

Next, we implement the IK, CCT, and AK econometric inference procedures, again plotting the cor-

responding power functions in the left panel of Figure 5 and their differences in Figure A.17. All three

procedures build upon local linear regressions but take different approaches to conduct inference. Strictly

speaking, Imbens and Kalyanaraman (2012) do not study inference but propose an MSE-optimal bandwidth

selector, the IK bandwidth:

ĥ =C ·
(

σ̂2(0+)+ σ̂2(0−)
f̂ (0) · (µ̂(2)(0+)− µ̂(2)(0−))2 + r̂

)1/5

·n−1/5

where C is a constant determined by the kernel, f (·) is the density of the running variable, µ(2)(0±) and

σ2(0±) represent the second derivatives of the CEF and conditional variance on both sides of the threshold,

r is a regularization term to prevent very large bandwidths, and the hats on the various quantities indicate

that they are estimated. By “IK” inference procedure, we refer to the “conventional” (terminology from

Calonico, Cattaneo and Titiunik, 2014) inference procedure practitioners typically implement in conjunction

with the IK bandwidth. More specifically, let τ denote the true RD parameter and τ̂ the local linear estimator,

we have

√
nh(τ̂− τ−h2B)⇒ N(0,Ω) (1)

where B denotes the bias constant, which is a function of the second derivatives of the CEF on both sides

of the threshold. Even though the normal distribution is centered around the constant τ +
√

nh5B when h

13As we show in Section 4.4.3, we cannot reject the independence assumption at the zero discontinuity level. Visual inference
tends to be positively associated with econometric inference at nonzero discontinuity levels, and thus the confidence intervals for
the differences are conservative there.
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shrinks at the optimal rate h = O(n−1/5) (as is the case for IK), “conventional” inference ignores the bias

term
√

nh5B. As seen in Figure 5, the 5%-level IK procedure is powerful, even more so than the piecewise

quintic estimator, and is significantly better than visual inference at detecting discontinuities up to 1.5σ . But

with this power comes a significant size distortion. When there is truly no discontinuity, the estimator still

rejects the null hypothesis in 22.6% of datasets.

Third, we assess the performance of the inference procedure proposed by Calonico, Cattaneo and Titiu-

nik (2014) (CCT) and implemented in the rdrobust Stata package. This procedure differs from IK and

creates robust confidence intervals by estimating the bias B in expression (1) using another (“pilot”) band-

width b, creating a bias-corrected estimator τ̂bc = τ̂ − h2B̂, and accounting for the sampling variation in B̂

under unconventional asymptotics where h/b converges to a positive constant.14 Note that although CCT’s

size is approximately 12.5%, as seen in the left panel of Figure 5, this may be a small sample problem.

Because there are only eight draws from each DGP, i.e. ε takes only eight values for each g, we effectively

have only 88 datasets, and all RD datasets within a DGP-seed pair are identical modulo the discontinuity

level. In a separate Monte Carlo simulation with 1,000 draws, the size is in line with that of the experts at

7.0%. However, it is possible that the type I error rate of visual inference also decreases over graphs based

on these alternative datasets, and therefore we keep the comparison based on the 88 datasets. The CCT in-

ference procedure is powerful, enjoying a significant 15 to 20 percentage point power advantage over expert

visual inference at intermediate discontinuity levels.15

Finally, we apply the AK inference procedure from Armstrong and Kolesár (2018) and implemented in

the R package RDHonest, which produces asymptotically valid and minimax optimal confidence intervals

over the Taylor class of conditional expectation functions

FT (C; χ±) =
{

f± : | f±(x)− f ′±(0)x|6CT |x|2 for all x ∈ χ±
}
.

CT is a researcher-supplied bound on the second derivatives on both sides of 0, which is an important

tuning parameter and dictates the bias magnitude of a local linear estimator (hence, unlike CCT, AK’s bias

correction is nonrandom). When using the true second-derivative bounds, which requires omniscience about

14Calonico, Cattaneo and Titiunik (2014) also generalize IK and propose a new class of MSE-optimal bandwidth selectors, which
we refer to as the CCT bandwidth(s). Recent work by Calonico, Cattaneo and Farrell (Forthcoming) proposes inference-optimal
RD bandwidth selectors, although the CCT bandwidth remains the more common choice in applied work.

15One may be concerned that the better size control of visual inference is a consequence of our experimental design where the
majority (nine out of 11) of RD graphs feature a discontinuity. If subjects speculate that only about half the graphs feature a
discontinuity, our size result is biased in favor of visual inference. As mentioned in Section 3.3 and Appendix C, we explicitly tell
participants that “all, some or none of the 11 graphs you see in this survey may feature a discontinuity,” and we present evidence in
Appendix D.3 to further alleviate this concern.
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the DGPs, the AK inference procedure has a size of approximately 7%, and the power function is very close

to that of the experts.16 Instead of using the true second derivative bounds, we also assess AK’s performance

using the maximum of the true bounds across all 11 DGPs. These larger bounds result in a decrease in size

of about four percentage points but a large drop in power, up to around 25 percentage points at intermediate

magnitudes and 10 percentage points at the smallest and largest ones. If the researcher is unwilling or

unable to provide a bound on curvature, RDHonest implements a rule-of-thumb curvature estimator as a

default bound. This rule-of-thumb is obtained via a piecewise quartic regression, which approximates our

piecewise quintic CEFs very well. Unsurprisingly, inference with these estimated bounds performs very

similarly to inference using the actual bounds, with a very small drop in size and a modest decrease in

power.

Inference procedures based on the IK and CCT estimators at the 5% level exhibit higher type I and

lower type II error rates than visual inference. It is difficult to say whether these econometric inference

procedures perform better or worse because there is no guidance on how to trade off type I and type II

errors. We circumvent this problem by size-adjusting the inference procedures: we search for alternative

critical t-values (or equivalently, critical p-values) such that the resulting type I error rate of the econometric

inference procedure is equal to that of visual inference and then use those critical values to conduct inference.

For IK, this critical t-value is 2.46, and it is 2.28 for CCT. We present the results for these size-adjusted

inference procedures in the right panel of Figure 5. Despite the extent of their size differences relative to

visual inference, both econometric procedures’ powers only suffer by around 5-10 percentage points from

this adjustment. When using these conservative critical values, the IK and CCT procedures retain their

statistically significant power advantages over visual inference at moderate discontinuities while matching

visual inference in size, as shown in Figure A.18.

In addition to asking experts to classify graphs as having or not having a discontinuity, we ask them to

estimate the magnitude of the discontinuity. We take several steps to make human and econometric point

estimates comparable. Because we ask participants to round their estimates to the nearest hundredth, we

round estimators with the same precision. We similarly replace econometric estimates with 0 when the test

fails to reject the null hypothesis.

Figure A.19 presents the root mean squared error (RMSE) of each estimator’s point estimates by DGP,

16Armstrong and Kolesár (2020) propose analogous confidence intervals that maintain coverage and enjoy minimax optimality
over a Hölder class of functions, which is determined by a global, as opposed to local, bound on the second derivative of the CEF.
The corresponding power functions (not plotted) are similar when using the true global second-derivative bounds.

27



averaged over all discontinuity magnitudes. We do this by DGP to prevent scaling issues, as units for each

DGP are different and results from one DGP are not directly comparable to those from another. Although

there are a handful of DGPs where experts perform similarly to the econometric estimators, their point

estimates generally have a greater RMSE than the estimators, and experts overall perform worse than the es-

timators at estimating magnitudes. We also decompose the human MSE gap relative to the piecewise quintic

in Figure A.19 into its bias and variance components (see Appendix A.3 for details about this calculation).

The DGPs are divided approximately evenly into those where bias is the source of most of the MSE and

where variance is the source. In summary, although humans perform quite well at identifying the existence

of discontinuities, their ability to estimate their magnitudes is not as strong.

4.4.2 RK Visual vs Econometric Inference

Paralleling the exercise for RD, we compare the performance of our expert pool with that of economet-

ric inference procedures. We first try two 5% tests on the kink parameter using a correctly specified OLS

regression model (piecewise quintic with homoskedastic standard errors) and the default CCT rdrobust

procedure, which is based on a bias-corrected local quadratic estimator for kinks (Imbens and Kalyanara-

man, 2012 and Armstrong and Kolesár, 2018 do not provide RK extensions of their RD methods). We

compare the power functions of visual inference with those for the piecewise quintic estimator in Figures 6

and A.20. Despite being the correctly specified model, the piecewise quintic estimator has low power even

at the largest kink level in our graphs. This is not surprising, as a kink of 0.9ξ corresponds to an asymptotic

t-statistic of 0.9 for the piecewise quintic kink estimator, well below the 1.96 critical value used in the test.

Results are similar for the default CCT rdrobust procedure, which has excellent size control but is highly

conservative as seen in the same two figures.

The large divergence in the performances of visual and econometric RK inference raises the question of

what the humans see that the two econometric procedures fail to capture. While this is a difficult problem,

we can provide a partial answer by looking for econometric inference methods that better mimic visual in-

ference. Beginning from the default CCT rdrobust procedure (bias-correction, local quadratic, triangular

kernel, bandwidth regularization, and robust standard errors), we test alternative inference methods to find

power functions that more closely resemble the experts’. We also plot the power functions of these addi-

tional inference procedures in Figure 6. Using a linear estimator instead of quadratic dramatically increases

the power at larger kink magnitudes. Using conventional standard errors, as opposed to the robust standard
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errors in rdrobust, and removing bandwidth regularization further increases power and brings the size

closer to the experts’. The expert power function is sandwiched between those of conventional inferences

based on local linear and local quadratic estimators with unregularized CCT bandwidths and uniform ker-

nels.17 We conclude that experts may be approximating a local linear or quadratic regression (or something

in between) as a heuristic to classify graphs, and we discuss this further in Section 4.4.3.

One may find it surprising that the econometric inference based on the correctly specified quintic re-

gression lacks power on our simulated datasets. However, that is not the most powerful test we can conduct.

Because of the normality of the error term in our DGP specification, we can implement a simple two-sided

test, the uniformly most powerful unbiased test, for whether the kink parameter is zero by imposing the true

values of all parameters in the model except for the parameter of interest. The size of the test is approxi-

mately 8% on our sample and it has a power of one at all nonzero kink levels.18 If we do not impose the

true values of the other parameters (or nuisance parameters), the problem of computing the power function

for the uniformly most powerful test becomes difficult (see recent progress by Elliott, Mäller and Watson,

2015), and we leave it to future research.

4.4.3 Complementarity of Visual and Econometric Inferences

To this point, we have only presented the “marginal” power functions for visual and econometric inference

procedures. In this subsection, we discuss the joint distribution of visual and econometric discontinuity/kink

tests. Knowing the joint distribution i) informs us of their complementarity, i.e. whether visual and econo-

metric inferences tend to be wrong on different data, and ii) is useful for combining inferences. We present

empirical results on i) below, while leaving the more conceptual discussion of ii) to Appendix E.

From the data that underlie the power function comparisons in Figures 5 and 6, we produce a series

of two-by-two contingency tables for the binary visual inference decision R and the binary econometric

inference decision based on an estimator θ̂ , R
θ̂

. More specifically, for each normalized discontinuity or

kink magnitude |d| (|d| takes on the values 0, 0.1944, 0.324, etc. per the design of our experiment), we

characterize the joint distribution of R and R
θ̂

over the set of graphs presented to the expert participants. We

conduct Fisher’s exact test for independence and present one-sided p-values in Table A.9 by estimator θ̂ and

17For the local linear and quadratic estimators, the average regularized CCT bandwidths are 0.23 and 0.33, respectively. The
corresponding unregularized bandwidths are 0.41 and 0.56. A bandwidth of 1 indicates a global regression.

18We implement the same test for our RD DGPs as well, and its power function is practically the same.
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discontinuity/kink magnitude |d|.19

Several patterns emerge from Table A.9. For RDD (Panel A), the first row shows no strong support for

an association between econometric and visual inference decisions when the true discontinuity is zero. But

when the true discontinuity is nonzero (rows two to six), there appears to be strong evidence in support of

association (though not reported in Table A.9, all correlations are positive in these cases). In other words,

type II errors by experts are predictive of type II errors by various econometric inference methods, but this

is not true for type I errors. For RKD (Panel B), the evidence for an association is much weaker. However,

consistent with our interpretation of Figure 6, the p-values generally become smaller and the evidence of

positive association becomes stronger when we move from the default rdrobust inference (labeled CCT1)

to conventional local linear inference with a relatively large bandwidth (labeled CCT4).

4.5 Eyetracking Study Results

In our eyetracking study, we investigate whether certain eye patterns are predictive of correct discontinu-

ity inference. Common practice in eyetracking is to divide the displayed image into “areas of interest”

(AOIs) ex-ante and measure how much visual attention these AOIs receive. In a study by Byrne, Kalaji

and Niederdeppe (2018), for example, the AOIs include warning labels on images of cigarette packs, and

the authors test whether the degree of visual attention therein predicts stated health risk beliefs and other

outcomes ex-post. Our case is different: we are agnostic about the AOIs ex-ante, and instead search for eye

patterns correlated with correct discontinuity inference.20 If we identify robustly predictive eye patterns, we

could then test in a follow-up experiment whether training participants based on these findings improves

performance.

As explained in Section 3.5, we choose the 11 graphs for this study by identifying those with the max-

imum difference in visual inference performance between non-experts and experts from the first three non-

expert phases and two expert seminar samples. We begin by testing for differences in visual inference and
19Because the maximum of the standard correlation measure depends on the marginal distributions of R and R

θ̂
(for example,

if Pr(R = 1) 6= Pr(R
θ̂
= 1), then their correlation cannot be 1), which vary across |d| and θ̂ , correlation is difficult to interpret.

Although we can follow the spirit of the proposals by Cohen (1960) and Davenport and El-Sanhurry (1991) and present correlations
scaled relative to their maximum as determined by the marginal distributions, we choose not to do so for brevity. Instead, we
only show one-sided p-values from Fisher’s exact test—two-sided p-values are method-dependent because of the ambiguity in
classifying contingency tables as extreme in the opposite direction (see for example Agresti, 1992).

20Because we show 11 different graphs, it is difficult to define consistent AOIs across the graphs. One might argue for using
an optimal bandwidth to define AOIs. Because we are interested in the bandwidth for visual inference, we apply the rdrobust
procedure to each of the binned datasets in the 11 graphs presented in the eyetracking study (the sample size of each dataset is the
number of bins in the graph). The discontinuity classification based on the resulting 95% robust confidence intervals is only correct
for six of the 11 graphs (55%), performing worse than our participants who classify 59% of graphs correctly on average.
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attention between experts and non-experts in our eyetracking sample and present the results in Table A.10.

Consistent with results from our early expert sample, the experts in the eyetracking study perform better—

they correctly classify the existence of a discontinuity in 68% of the graphs, higher than the 53% for the

non-experts. On average, the six experts spend more than twice as long on each graph and fixate on more

than twice as many locations.

We then transform the eyegaze pixel coordinate data into the units of the (x,y) variables of each graph

and compute a set of summary measures from the eyetracking microdata. We describe the construction of

these summary measures in detail in Appendix F. The summary measures we construct include the num-

ber of fixations, quantities that proxy for “visual bandwidth” (the horizontal range and horizontal standard

deviation of the eyegaze coordinates), and the square root of the average squared deviation of the eyegaze

coordinates from the true CEF scaled by σ . We refer to the latter measure as the “eyegaze RIMSE” (root

integrated mean squared error). We also fit RDD models to the eyegaze data using the CCT inference pro-

cedure and record the conventional and bias-corrected local linear estimates. We then compute the absolute

deviation of these estimates from the true discontinuity in the DGP, which we also scale by σ .

The only measures that are significantly different between the experts and non-experts at the 5% level

are time spent on each graph and whether the local RD eyegaze estimates are computable (which depends

on the number of distinct eyegazes)—fewer RD estimates are uncomputable from experts’ eyegaze data.

Significant at the 10% level, experts cover 30% more horizontal range (1.40 out of a maximum of 2).

Next, we assess the extent to which eyegaze patterns predict visual inference success. As mentioned

above, the goal is to identify patterns that are causally linked to successful inference. To that end, our

prediction exercise requires interpretability, and therefore we use the simple eyegaze summary measures

in Table A.10 as inputs to various prediction models. In addition, we include the 11 graph identifiers as

explanatory variables—eyegaze patterns differ across graphs, and graphs vary in their difficulty, so omitting

the graph identifiers may lead us to erroneously conclude that certain eyegaze patterns are important. Be-

cause of the large number of covariates relative to the number of graphs, we fit penalized logit, pruned tree,

bagging, and random forest models to prevent overfitting and we choose tuning parameters via five-fold

cross validation where applicable.

The most important predictive variables appear to be the graph identifiers. Some of the graphs we test

are easy for participants to classify while others are difficult, and knowing which graph a participant looks

at is the most potent predictor. We do not detect any ocular patterns that robustly predict successful visual
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inference based on our small eyetracking study (the full details of the prediction exercise are in Appendix F).

We tentatively conclude that although experts outperform non-experts in this study, their eyegaze patterns

are similar along most dimensions we consider, and the better performance is likely driven by the processing,

as opposed to the acquisition, of visual signals.

5 Conclusion

This paper evaluates the performance of visual inference in regression discontinuity and kink designs, set-

tings in which graphical representation plays an important role in conveying empirical results. Through

a series of experiments and studies, we provide answers to questions in four related areas. First, how do

graphical representation techniques affect visual inference? Second, do experts and non-experts differ in

their visual inference performances, and are experts able to identify the most effective treatments for non-

experts? Third, how does visual inference perform compared to common econometric inference procedures

in RDD and RKD? And fourth, can we identify ocular patterns predictive of successful visual inference?

To answer the first question, we experimentally assess how visual inference accuracy is affected by

five graphical parameters for RDD: bin width, bin spacing, imposing fit lines from global polynomial re-

gressions, including a vertical line indicating the policy threshold, and scaling the y-axis. We find that

generating graphs with the Calonico, Cattaneo and Titiunik (2015) IMSE (large) bin selector leads to higher

type I error rates but lower type II error rates relative to their MV (small) bin selector. Similarly, imposing

fit lines leads to increased power but may come at the expense of size distortion. Bin spacing, the vertical

line, and y-axis scaling have little effect. For RKD, we test bin width along with two additional graphical

methods: detrending the data and plotting derivative (as opposed to level) estimates. Larger bin widths again

lead to higher type I error rates, though to a smaller extent than in RDD, but generally lower type II error

rates. Detrending may improve power without increasing size. Plotting derivatives does not appear to be a

constructive approach as it leads to worse size and power.

For the second set of questions, we study visual inference by experts and compare their performance

to the non-experts’. Experts perform similarly to non-experts in reading RD graphs, with marginally lower

type II error rates at moderate discontinuity levels. Experts’ RK visual inference is considerably more pow-

erful. When predicting different graphical representation techniques’ effects on non-expert visual inference,

experts only partly anticipate the tradeoff between type I and type II errors that arises, notably for bin widths.
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Third, visual inference from RD graphs generated using the method with the smallest size achieves a

lower type I error rate than econometric inference at the 5% level based on the Imbens and Kalyanaraman

(2012) and Calonico, Cattaneo and Titiunik (2014) estimators, though the two econometric inference pro-

cedures offer considerable power advantages. The performance of visual inference is very similar to that

based on the procedure suggested in Armstrong and Kolesár (2018). For RKD, type I error rates are higher

for visual inference, but only for DGPs with curvature that peaks near the threshold. The default robust

inference procedure from Calonico, Cattaneo and Titiunik (2014) does not suffer from this issue, but has a

serious power disadvantage even at the largest kink magnitude we test. We can alleviate the lack of power

and mimic the visual inference power function by using conventional inference based on a local linear or

quadratic estimator in conjunction with a larger bandwidth without the regularization term.

Finally, our eyetracking study does not reveal eyegaze patterns that robustly predict success in visual

inference. Although the experts in this sample perform better than the non-experts, we cannot attribute this

to their ocular movements, at least not in terms of summary measures such as their “visual bandwidth” or

how well they trace out the underlying conditional expectation function.

The findings in this paper have practical implications for the implementation of RD/RK designs. First,

our results on the effects of graphical parameters on visual inference inform best practices in graphical rep-

resentation. Given the observed tradeoff in type I and type II error rates associated with graphical parameters

like bin width and fit lines, graphical representation entails normative judgment (more formally, the spec-

ification of a loss function). In arguing for the presence of a discontinuity, a conservative approach would

use small bins without fit lines to produce RD graphs that best control size. However, to argue for a null

treatment effect when the prevailing knowledge is that the treatment effect is nonzero, or when providing

covariate plots to ensure an RD/RK design is valid, being conservative calls for a method that can powerfully

detect a treatment effect, and the use of large bins and fit lines may be warranted. It is also useful that we

document the lack of effects from graphical parameters like y-axis scaling and vertical lines on RD visual

inference, which allows researchers to adhere to reasonable personal preferences. Second, we can leverage

our visual-econometric inference comparison to adjust the critical value in the IK and CCT RD inference

procedures (critical t-values of 2.46 for IK and 2.28 for CCT) so that they achieve the same size as visual

inference while retaining power advantages.

As we have discussed throughout this paper, a caveat for our results and takeaways is that they are based

on a specific set of DGPs. For example, while the bin spacing choice—equally spaced or quantile spaced—
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appears immaterial in our RD experiments, it may be important when the distribution of the running variable

is farther from uniform than in our DGPs. On the other hand, the number of DGPs used in Monte Carlo

simulations that lead to methodological recommendations is typically far lower than our 11, and those DGPs

sometimes bear no semblance to real-world data. In addition, we test the validity of our simulated datasets

by adapting the lineup protocol from Majumder, Hofmann and Cook (2013) to assess the degree to which

our DGPs approximate the original data.

Our study answers the call by Leek and Peng (2015) to provide empirical evidence on best practices in

data analysis, and we hope it will spur similar investigations. One related topic to study follows the recent

work by Cattaneo et al. (2019), who, among other contributions, propose econometric tests of linearity and

monotonicity based on binned scatter plots, which are motivated by studies such as Chetty et al. (2011) and

Chetty et al. (2014). One could assess the impact of the graphical parameters on reader perception and com-

pare visual and econometric linearity/monotonicity tests. Another closely related topic is structural breaks in

time series econometrics, in which graphs serve practically the same purpose as those in RDD/RKD. Within

time series econometrics, studying visual inference for unit root/stationarity analysis may also be promis-

ing.21 In an influential textbook, Stock and Watson (2011) conduct an augmented Dickey-Fuller (ADF) test

for the presence of a unit root in U.S. inflation. Upon finding that the test rejects a unit root at the 10% level

but not at the 5% level, Stock and Watson (2011) write “The ADF statistics paint a rather ambiguous pic-

ture. . . Clearly, inflation in [the figure] exhibits long-run swings, consistent with the stochastic trend model.”

In this case, Stock and Watson (2011) apply visual unit root inference when the test statistic is marginal,

which raises the question: can we leverage our eyes to begin with?

21Recently, Shen and Wirjanto (2019) propose a new framework for stationarity tests, which formalizes the intuition that a visual
characteristic of stationary time series is the infinite recurrence of “simple events” asymptotically.
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Figures

Figure 1: RDD Phases: Power Functions
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Figure 2: RDD Phases: Power Functions against Asymptotic t-Statistics
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Figure 3: RKD Phase: Power Functions
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Figure 4: Expert vs Non-Expert Performance
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Figure 5: RDD: Expert Visual vs Econometric Inference
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Notes: PQ uses a correctly-specified regression model using piecewise quintics above and below the treatment

threshold and assuming homoskedasticity. IK is based on a local linear estimator using the IK bandwidth.

CCT Robust is the default RDD inference procedure from CCT’s rdrobust, which uses the robust confidence

interval based on a bias-corrected local quadratic estimator with triangular kernel and regularized (smaller)

bandwidth. AK uses the RDHonest procedure with the true bound on each DGP’s second derivative.
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Figure 6: RKD: Expert Visual vs Econometric Inference
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Notes: Piecewise Quintic is a correctly-specified regression model using piecewise quintics above and below

the treatment threshold and assuming homoskedasticity. CCT Robust is the default RKD inference procedure

from CCT’s rdrobust, which uses the robust confidence interval based on a bias-corrected local quadratic

estimator with triangular kernel and regularized (smaller) bandwidth. CCT Rob. Lin. w/Reg. Tri. is the same

as CCT Robust, except it is based on a linear estimator. CCT Conv. Quad. Unif. is the inference procedure

using the conventional confidence interval based on a uncorrected local quadratic estimator with uniform kernel

and unregularized (larger) bandwidth. CCT Conv. Lin. Unif. is the same as CCT Conv. Quad. Unif., except it

is based on a linear estimator.
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Appendix (For Online Publication Only)

A Theory: Estimator Properties, Bin Selectors, and MSE Decompositions

A.1 Properties of the Type I and Type II Error Probability Estimators

Following Section 2, Proposition 1 states the properties of the g-specific estimator p̂(γ,g,d).

Proposition 1. Under Assumption 1 and for a given DGP g

1. E[p̂(γ,g,d)] = p(γ,g,d)

2. p̂(γ,g,d) P→ p(γ,g,d) as M→ ∞

3. M · p̂(γ,g,d)∼ Binomial(M, p(γ,g,d))

4.
√

M(p̂(γ,g,d)− p(γ,g,d))⇒ N (0, p(γ,g,d) · (1− p(γ,g,d))) .

The proof of the proposition follows trivially from Assumption 1.

Parts 1 and 2 of the proposition state that p̂(γ,g,d) is an unbiased and consistent estimator for p(γ,g,d).

Part 3 states that p̂(γ,g,d) has a scaled binomial finite sample distribution, for which methods such as the

Clopper-Pearson confidence interval have been developed for finite sample inference, which allows us to

construct confidence intervals on the g-specific type I and II error probabilities. The standard asymptotic

normality result is provided in Part 4, but we do not invoke it in our analysis since M is equal to eight in our

experiments due to resource constraints.

Now we state the properties of the overall estimator ˆ̄p(γ,d).

Proposition 2. Under Assumptions 1 and 2

1. E[ ˆ̄p(γ,d)] = p̄(γ,d)

2. ˆ̄p(γ,d) P→ p̄(γ,d) as J→ ∞

3. Conditional on {g j}J
j=1, M · J · ˆ̄p(γ,d) follows a Poisson binomial distribution

4. As J→ ∞,
√

J( ˆ̄p(γ,d)− p̄(γ,d))⇒ N
(
0,varg∈G (p̂(γ,g,d))

)
, with

varg∈G (p̂(γ,g,d)) = 1
M p̄(γ,d)+(1− 1

M )E[p(γ,g,d)2]− p̄(γ,d)2.

1



Proof. Part 1:

E[ ˆ̄p(γ,d)] =
1
J

J

∑
j=1

Eg j∈G [E[p̂(γ,g j,d)|g j]]

=
1
J

J

∑
j=1

Eg j∈G [p(γ,g j,d)]

= p̄(γ,d)

Part 2: Assumptions 1 and 2 imply that, for any J, { p̂(γ,g j,d)}1≤ j≤J is a set of independent and identically

distributed random variables. Since p̂(γ,g j,d)2 is uniformly bounded between zero and one, the weak law of

large numbers for triangular arrays (see, for example, Durrett, 2010) applies to the set { p̂(γ,g j,d)}1≤ j≤J,J=1,2,....

Because the expectation of p̂(γ,g j,d) is p̄(γ,d) for each j (Part 1 of the proposition), we have the desired

result.1

Part 3: the statement simply follows the definition of a Poisson binomial distribution.

Part 4: Similar to the proof of part 2 of the Proposition, the result follows from an application of the Central

Limit Theorem for Triangular Arrays (or the Lindeberg-Feller Central Limit Theorem):

√
J( ˆ̄p(γ,d)− p̄(γ,d))⇒ N

(
0,varg∈G (p̂(γ,g,d))

)
.

The law of total variance implies that

varg∈G (p̂(γ,g,d))

=Eg∈G [var(p̂(γ,g,d)|g)]+ varg∈G (E[p̂(γ,g,d)|g])

=Eg∈G

[
p(γ,g,d)(1− p(γ,g,d))

M

]
+ varg∈G (p(γ,g,d))

and the last equality follows from Proposition 1. Since

varg∈G (p(γ,g,d)) = Eg∈G [p(γ,g,d)2]−Eg∈G [p(γ,g,d)]2

we have

varg∈G (p(γ,g,d)) =
1
M

p̄(γ,d)+(1− 1
M
)Eg∈G [p(γ,g,d)2]− p̄(γ,d)2

following simple algebra.

1The application of the law of large numbers for triangular arrays, as opposed to its standard counterpart, allows p̂(γ,g j,d) to
change as J increases. Take p̂(γ,g1,d), for example. We accommodate the scenarios where M, the number of participants who see
g1, changes with J, or where we allocate different individuals to see g1 as we increase the number of DGPs sampled.

2



Parts 1 and 2 of Proposition 2 establish unbiasedness and consistency of ˆ̄p(γ,d) as an estimator for

p̄(γ,d). Part 3 provides the finite-sample distribution of ˆ̄p(γ,d); the Poisson binomial distribution is that of

a sum of independent but potentially non-identically distributed Bernoulli random variables. Part 4 states

the asymptotic normality result for ˆ̄p(γ,d) as J→∞. In principle, we can consistently estimate the variance

and use Part 4 to conduct inference on p̄(γ,d) if J is large. As with M, however, we choose a moderate J (11)

in our experiments due to resource constraints, and the asymptotic normality statement is, therefore, more

conceptual than practical. Nevertheless, we make the following observations on the variance expression in

Part 4 to help understand the variation in the estimator ˆ̄p(γ,d). In essence, the variance expression reflects

the block assignment nature of the DGPs to the participants. When M = 1, each DGP is only assigned

to a single participant, the Ri’s are i.i.d., and ˆ̄p(γ,d) simply follows a (scaled) binomial distribution with

variance p̄(γ,d)− p̄(γ,d)2. When M > 1, each DGP is assigned to a block of participants, the Ri’s are no

longer independent within the same block, and the distribution of ˆ̄p(γ,d) generally deviates from a (scaled)

binomial. When M is large, we can precisely estimate p(γ,g,d) for each DGP g, and the variance of ˆ̄p(γ,d)

reduces to that of p(γ,g,d) over the space of DGPs.

In the actual analysis of our experimental data, we use the normal approximation of the binomial ran-

dom variable Binomial(M · J, p̄(γ,d)) when M · J is large. Based on a result from Hoeffding (1956) and

summarized by Percus and Percus (1985), using Binomial(M · J, p̄(γ,d)) leads to conservative inference

on the Poisson binomial random variable M · J · ˆ̄p(γ,d) when conditioning on {g j}J
j=1.2 Therefore, condi-

tioning on the set of selected DGPs, using the normal distribution N
(

ˆ̄p(γ,d), ˆ̄p(γ,d)(1− ˆ̄p(γ,d))/(M · J)
)

provides (approximately) conservative inference for ˆ̄p(γ,d) and only relies on the product M ·J being large,

as opposed to J being large by itself.

A.2 Calonico, Cattaneo and Titiunik (2015) Bin Selection Algorithms

This section describes the two bin width algorithms from Calonico, Cattaneo and Titiunik (2015): the IMSE

algorithm, which minimizes the integrated mean squared error of the bin-average estimators of the CEF

and results in fewer, larger bins, and the MV algorithm, which aims to approximate the variability of the

underlying data and results in more, smaller bins.

Formally, consider without loss of generality the number of bins above the threshold. We denote the

relevant quantities with a “+” subscript. The IMSE bin selector chooses the number of bins J+,n to minimize

2For a given (γ,d), inference for ˆ̄p(γ,d) using Binomial(M · J, p̄(γ,d)) is exact when p(γ,g j,d) is the same for all j.

3



the integrated mean squared error∫ x

0
E[(µ̂+(x)−µ+(x))2|X = x] f (x)dx =

J+,n

n
Var+{1+op(1)}+

1
J2
+,n

Bias+{1+op(1)}

where µ+ denotes the CEF, µ̂+ denotes the bin-average estimator of µ+, f (x) is the density of X , n is the

overall sample size, and the constants are equal to

Var+ =
1
x

∫ x̄

0
σ

2
+(x)dx

Bias+ =
x2

12

∫ x̄

0
(µ ′+(x))

2 f (x)dx,

with x̄ being the upper bound of the support of X , µ ′+ the first derivative of µ+, and σ2
+(x) the conditional

variance of Y given X = x.

Solving the minimization problem, we obtain the IMSE-optimal number of bins

J+,n,IMSE =

⌈(
2Bias+
Var+

) 1
3

n
1
3

⌉
with an analogous J−,n,IMSE for the number of bins below the threshold.

The goal of the mimicking variance bin selector, on the other hand, is to “choose the number of bins so

that the binned sample means have an asymptotic (integrated) variability approximately equal to the amount

of variability of the raw data” (Calonico, Cattaneo and Titiunik, 2015). Consider again the problem of

choosing the number of bins above the threshold. The MV criterion translates to setting

J+,n

n
Var+ =Var(Y |X > 0)≡V+.

It follows that the number of bins should be

J+,n =
V+

Var+
n.

However, this number of bins grows too quickly for the rate conditions in Calonico, Cattaneo and Titiunik

(2015) that ensure the consistency of µ̂+(x). Instead, the authors modify the formula slightly and use the

following bin number

J+,n,MV =

⌈
V+

Var+

n
log(n)2

⌉
.

A.3 Mean Squared Error Decompositions

For each meta-graph (γ,g,d), let di(γ,g,d,εi) be the discontinuity estimate by participant i. The “human es-

timate” of the discontinuity for this meta-graph is then given by the average d̂(γ,g,d) = 1
M ∑

M
i=1 di(γ,g,d,εi).

4



Meanwhile, let d
θ̂
(g,d,εi) and d̂

θ̂
(g,d) = 1

M ∑
M
i=1 d

θ̂
(g,d,εi) be the corresponding estimates given by the

econometric estimator θ̂ . In order to better compare the performance of the humans versus the econometric

estimator, we further decompose the mean squared error (MSE) of the above estimates into the square of the

bias and the variance, by using the following identities respectively:

1
M

M

∑
i=1

(di(γ,g,d,εi)−d)2 = (d̂(γ,g,d)−d)2 +
1
M

M

∑
i=1

(di(γ,g,d,εi)− d̂(γ,g,d))2 (A1)

1
M

M

∑
i=1

(d
θ̂
(g,d,εi)−d)2 = (d̂

θ̂
(g,d)−d)2 +

1
M

M

∑
i=1

(d
θ̂
(g,d,εi)− d̂

θ̂
(g,d))2. (A2)

Note that the interpretation of the quantities in the first identity differs slightly from the conventional MSE

decomposition, since the randomness here not only comes from the realization (εi), but also from the partici-

pant (di). Nevertheless, the second term can still be conveniently understood as the variance, as di(γ,g,d,εi)

remains independent and identically distributed for different i. In Figure A.19, we plot the square root of

the expression (A1) and the expressions (A2) for various θ̂ . We also decompose the difference between the

left-hand sides of (A1) and (A2) into differences in bias and variance for the case where θ̂ is the piecewise

quintic estimator.

B Additional Details on DGP Specification and Simulated Dataset and Graph

Creation

In conjunction with Section 3.2 in the main text, this appendix describes the process by which we create our

simulated datasets and graphs.

For RDD, we identify 110 empirical papers drawn from top economics journals including the American

Economic Review, American Economic Journals, Econometrica, Journal of Political Economy, Journal

of Business and Economic Statistics, Quarterly Journal of Economics, Review of Economic Studies, and

Review of Economics and Statistics. We then randomly sample 11 papers from this list that have replication

data available.

For the specification of the running variable for each DGP, we directly use the empirical distribution of

X from the corresponding paper and normalize the running variable to lie in [−1,1]. If the support of the

running variable is asymmetric, this normalization may create a discontinuity in the density at x = 0, which

violates the assumptions in the identification framework of Lee (2008) (but not the minimally sufficient

identifying assumptions of Hahn, Todd and Van der Klaauw, 1999). The original running variable in seven
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of our 11 papers fails the McCrary (2008) test for continuity of the running variable density. Among our

normalized running variables, eight fail the test, with two passing only in their non-normalized version and

one passing only after normalizing. In our testing, visual inference performance does not vary significantly

across DGPs whether the support of their original (unnormalized) running variables is symmetric. Following

Imbens and Kalyanaraman (2012) and Calonico, Cattaneo and Titiunik (2014), we remove any observations

where |X |> 0.99.

Next, we use the resulting datasets and further follow Imbens and Kalyanaraman (2012) and Calonico,

Cattaneo and Titiunik (2014) to specify the DGP’s CEF via a piecewise global quintic regression. De-

noting the left and right intercepts of the CEFs by α− and α+, we shift the right arm of the CEF up-

wards/downwards by the amount |α+−α−| to make the functions E[Ỹ |X = x] continuous at the policy

threshold.

Our specification of the distribution of the error term u as i.i.d. normal similarly follows Imbens and

Kalyanaraman (2012) and Calonico, Cattaneo and Titiunik (2014). u has mean zero and standard deviation

σ , which is specified as the root mean squared error of the global quintic regression in the CEF specifica-

tion above. We generate eight draws of u for each DGP, enough so that every graph we generate for our

experiments is seen by no more than one participant. Most of our RD papers use a continuous running

variable, but two feature semi-discrete variables where the running variable takes on many unique values

but these points have multiple observations each. In these two cases, we add small amounts of noise from

a N(0,( 1
min{N−,N+})

2) distribution, where N− and N+ are the number of observations below and above the

policy threshold, to make them continuous and match the regularity conditions assumed in Calonico, Cat-

taneo and Titiunik (2015). We add this noise prior to fitting the piecewise quintic CEF. Perturbing the data

prior to fitting the quintics introduces a small amount of “measurement error” that can attenuate estimated

discontinuities. Alternatives include fitting the CEF prior to adding the noise or drawing the noise from a

uniform distribution to prevent observations from crossing the policy threshold. For a thorough discussion

of measurement error in RD, see Pei and Shen (2017).

In practice, the difference between adding the noise before and after fitting the CEF is minor. Figure

A.21 presents lineup protocols for these two DGPs. To test the null hypothesis that the DGP resulting from

fitting the piecewise quintic prior to adding noise is indistinguishable from the DGP where noise is added

first, we randomly place one graph from the former distribution among 19 from the latter. All graphs use a

continuous running variable generated by adding noise to the original semi-discrete one. The solutions, i.e.
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the graphs from the DGP fit on the original data, are in the footnote at the end of this sentence.3 We present

both sets of CEFs in Figure A.22, with the scale of the y-axis chosen to match that of the corresponding

graph in the original paper. Although the differences in the tails for the CEF on the right of Figure A.22

underscore the sensitivity of the piecewise quintic specifications, the difficulty of these lineup protocols and

the general similarity of the CEFs suggest that the infusion of measurement error is not a major concern.

Specifying the RKD DGPs requires several modifications to our process. As mentioned in Section 3.2,

we generate the running variable by sampling from an estimated kernel density due to data confidentiality

issues. We again normalize the support of the running variable to [−1,1] with observations where |X |> 0.99

trimmed. Because the X variable in all of the RKD applications is income, its distribution is skewed and its

support quite asymmetric around 0. Therefore, we select the largest subsample such that the support of X

therein is symmetric around 0.

While one can create arbitrary discontinuities that preserve the shape of the CEF just by vertically

shifting one of the DGP’s “arms,” kinks are not as simple. How do we create a zero-kink graph from the

seven kinked CEFs in Figure A.6? (The four global quintic CEFs already have no kink.) We decide to rotate

the right arm of the CEF until the left and right derivatives match. Following that logic, we create graphs with

kinks by rotating the right arm from the zero-kink graph at nine different levels. As explained in Section 3.2,

we create the four smooth global quintic DGPs out of concern that only using the seven piecewise quintic

DGPs may be too favorable to visual inference. Specifically, several of the zero-kink CEFs of the piecewise

quintic DGPs obtained by rotating their right arms appear similar to a linear function, at least locally around

x= 0. In comparison, the curvature in the global quintic DGPs, especially in combination with the function’s

peaking at x = 0, is likely much harder to distinguish from a kink for visual inference.

Because we generate the RK graphs by rotations, we express the kink magnitude in terms of the angle

between the left and right arms of the CEF. A kink is defined as the difference between the right deriva-

tive (denoted by κ+) and the left derivative (denoted by κ−), κ+− κ−, and the corresponding angle is

simply ψ ≡ arctan(κ+)− arctan(κ−). Our nine rotations are 0,±0.1944ξ ,±0.324ξ ,±0.54ξ ,±0.9ξ radi-

ans, where ξ is the asymptotic standard deviation of the angle estimator between the left and right arms

ψ̂ ≡ arctan(κ̂+)−arctan(κ̂−) and κ̂+ and κ̂− are estimators of κ+ and κ− from a piecewise quintic regres-

sion on the data used to calibrate the CEF. A complication of this rotation-based approach is that the right

3The solution for the left lineup is row 5 · 2− 6 and column 22− 1. The solution for the right lineup is row −3 · 2+ 10 and
column 9/3−2.
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arm of a function can be rotated only a certain amount before it bends back over itself and ceases to be a

function. For each RK DGP, we calculate the maximum angle such that its rotated CEF remains a function,

and this maximum prevents us from specifying the largest kink magnitude as ±1.5ξ for some of the DGPs.

While the maximum kink magnitude in our RK DGPs is ±0.9ξ , we cannot create kinks that large for all

of the DGPs. We replace two meta-graphs that would go too far, +0.54ξ and +0.9ξ for Card, Lee and Pei

(2009), with their non-offending negative counterpart rotation.

Specifying the distribution of the error term u is more complex in RKD for two reasons. First, adding u

prior to rotation may result in points changing order along the x-dimension post-rotation, exacerbating the

maximum rotation problem. Second, unlike the vertical shift technique used in creating RD datasets and

graphs of different discontinuity levels, data rotation changes the standard deviation of the error term. To

circumvent these problems, we rotate the right arm of the CEF first and then add the error term to generate

the outcome variable. The standard deviation of u depends on the degree of rotation and is calculated such

that ξ , the asymptotic standard deviation of the angle estimator ψ̂ in the original fitted CEF, remains the

same after rotation. Like in the RD case, we use eight draws of u for each DGP.

C Design of Experiments and Studies

This section outlines the structure of the RDD and RKD experiments. We first describe the general sequence

of events and survey structure before discussing the sequential rollouts of the RDD and RKD experiments.

All parts of this study were approved by the Institutional Review Boards (IRBs) of Cornell University,

Princeton, Columbia Teachers College, and the University of Waterloo and were pre-registered on Open

Science Framework and at the American Economic Association’s RCT Registry. Expert studies run as part

of seminars were additionally approved by their respective local IRBs. Before beginning any of the studies,

participants completed consent forms. Participants had the opportunity to exit the study at any time.

C.1 Non-Expert Experiment

Each experiment consisted of three parts. In Part 1, participants watched a video tutorial on RDD (RKD)

outlining the graph construction (normalization of the running variable, binning the data, etc.) and stating

the objective as classifying a discontinuity (kink) in the “true” underlying relationship at x = 0. The video

tutorial lasted between three to four minutes depending on the participant’s graphical representation treat-
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ment. For example, participants in treatment arms featuring fit lines received a brief supplementary segment

informing them that fit lines only serve as approximations of the true underlying relationship between the

running variable and the outcome variable. To ensure participant engagement, the video tutorial featured

an attention check about halfway through the video. This took the form of a colored bird (see example

in Figure A.23); the voiceover on this slide informed participants that when asked about the color of our

“bird of interest,” they should report a specific color that did not match the color of the bird in the picture.

For example, participants seeing Figure A.23 below might be asked to report that the bird is red, not blue.

Participants had the opportunity to watch the video several times or to pause and rewatch specific sections

as desired. However, participants were not able to return to the video tutorial once they had moved on to the

next section.

The video tutorial was followed by a sequence of example questions. Participants were asked to classify

tutorial graphs and received feedback on their answers. Participants could navigate between these graphs

using a panel of buttons on the right-hand side of the screen (see Figures A.24 and A.25).

Part 2 of the experiment consisted of a series of paid classification tasks. Participants were asked to

assess whether a given graph featured a discontinuity/kink or not and could choose between two potential

bonus options for each graph. We discuss this bonus system in detail in the next subsection. Figure A.26

shows a typical classification screen. Participants were not given any feedback regarding their accuracy

between tasks.

Part 3 of the experiment was an exit survey. We solicited basic sample demographics such as age, gender,

occupation, education level, and prior experience with statistics. For all phases after the initial pilot, we also

asked participants to report whether they had participated in earlier iterations of the study. At the end of

the experiment, participants were informed of the total number of graphs they classified correctly as well as

their corresponding bonus earnings (see Figure A.27 for an example). Experiment participants were paid in

Amazon gift cards after each phase was complete.

C.1.1 Analysis of Bonus Payments

Participants in the experiment had the option to choose between earning a bonus of 40 cents if their dis-

continuity/kink classification was correct and nothing otherwise, or to earn a bonus of 20 cents irrespective

of their classification. Note that participants will choose a given answer if their perceived probability that

the answer is correct is at least 50%. Denoting the utility function by u, the expected utility under the wa-
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ger for a perceived probability of p ≡ P(correct) is given by pu($0.40)+ (1− p)u($0), which is equal to

pu($0.40) if we normalize u(0) to zero. Assuming expected utility maximization, participants will choose

the sure amount whenever pu($0.40) ≤ u($0.20), i.e. whenever p ∈ [0.5,u($0.20)/u($0.40)]. Further as-

suming that subjects are approximately risk neutral at small stakes, participants would only choose the sure

amount whenever they believe their chance of being correct to be a coin flip (since u($0.20)/u($0.40) is

approximately equal to 0.5 in this case).

If we instead allow for loss aversion, participants prefer the sure amount under a wider range of (per-

ceived) success probabilities. Under loss aversion, the structure of the model is similar except that the

utility function is replaced with a value function for gains and losses with respect to a reference point

(Kahneman and Tversky, 1979). Prospect theory is based on the assumption that losses loom larger than

gains, which is commonly operationalized through a loss-aversion parameter λ > 1 multiplying outcomes

in the loss domain. Assuming that participants view the sure amount of 20 cents as their reference point,

prospect theory suggests that they would consider the gamble as an opportunity to win 20 cents or lose 20

cents depending on their answer. The expected payoff of the wager in this case is given by pu($0.40−

$0.20)−λ (1− p)u($0.20−$0) = u($0.20)(p−λ (1− p)), which would be compared to a certain outcome

of u($0.20− $0.20) = 0 under the fixed payment option. Participants would therefore choose the wager

whenever p/(1− p)≥ λ . Estimates for λ commonly range between 1.5 and 2.5, though significant hetero-

geneity may exist with respect to this preference parameter. See Chapman et al. (2018) for a review.

C.1.2 RDD

The rollout of the RDD experiments was staggered across four phases which were completed between

November 2018 and October 2019. Table A.1 outlines the graphical representation treatments imple-

mented in each phase. Each participant’s classification task featured 11 graphs, one from each of the

11 specified DGPs. The order of graphs was randomized within subjects. The discontinuity levels were

chosen as follows: two graphs featured no discontinuity, one graph featured the extreme discontinuity

levels of ±1.5σ , and the remaining eight graphs were based on each of the eight discontinuity levels

±0.1944σ ,±0.324σ ,±0.54σ ,±0.9σ . In total, each treatment arm contained 968 unique graphs split across

88 unique participants. Figure A.28 outlines the sequence of events for the RDD experiments.
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C.1.3 RKD

The rollout of the RKD experiments consisted of a pilot followed by a single experiment, both completed

between April and June of 2019. Table A.2 outlines the graphical representation treatments implemented

in each phase. Each classification task was split into two distinct sections. One section corresponded to

RKD graphs presented in levels and required participants to assess the presence of a kink. The other section

instead plotted estimated derivatives and required participants to assess the presence of a discontinuity. The

order of the two sections was randomized between participants.

In the RKD pilot, all graphs were based on 7 piecewise quintic DGPs. Participants saw one graph from

each DGP in each of the two sections, for a total of 14 graphs. In the final experiment (Phase RKD), we

added four additional global quintic DGPs that featured smooth peaks instead of kinks at x = 0 and asked

participants to classify a total of 22 graphs (11 graphs in each section). The test kink levels (measured in

radians) were 0,±0.1944ξ ,±0.324ξ ,±0.54ξ ,±0.9ξ , for a total of nine possible levels. The pilot featured

504 unique graphs for each treatment arm split across 72 unique surveys, and Phase RKD featured 792

unique graphs per treatment arm split across 72 unique surveys. Figure A.29 outlines the sequence of events

for the RKD experiments.

C.2 Expert Study

The expert study was run both online using members of the National Bureau of Economic Research in

applied microeconomic fields (aging, children, development, education, health, health care, industrial or-

ganization, labor, and public) and members and affiliates of the Institute of Labor Economics (IZA), and

during three seminar presentations between May and October of 2019. Table A.11 shows the timeline and

number of participants for each session. Figure A.30 outlines the sequence of events for the expert study.

Unlike in the non-expert experiments, participants in the expert study were not asked to watch a video

tutorial or complete practice questions at the start. Instead, Part 1 of the expert study was a classification

task paralleling the one non-expert participants completed (see Figure A.32). In addition, the graphical

representation choices in this study were not randomized between subjects. Participants had the opportunity

to navigate between the 11 graph classifications using a panel of navigation buttons at the bottom of the

screen. This feature was introduced to address feedback we received during the testing of the survey. Figure

A.32 shows an example of the task screens for participants in the RD and RK treatments.
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Part 2 of the expert study asked participants to rank four alternative graphical representation options for

RDD or two for RKD. The four treatment combinations in the RD case corresponded to small or large bins

interacted with both fit line treatments, as in Phase RDD4. The two treatment combinations in the RK case

were small and large bins. The instructions for Part 2 of the expert survey are outlined in Figures A.33 and

A.34. Participants were asked to specify which graphing treatment they believe researchers should use to

present evidence of the main treatment effect of a study, as well as which graphical options they believe

would perform best and worst in our non-expert sample. Participants were also able to report having “no

preference” across the different graphing options. These three decisions were repeated three times in the

context of a zero, small, and large discontinuity or kink.

Part 3 of the expert study was an exit survey. We asked about basic sample demographics such as age,

gender, geographic region, main area of research, and prior experience with RD/RK. After all sessions of

the expert study were complete, we randomly selected four participants to receive a participation fee of

$450 plus $50 for every correctly classified graph in Part 1 of the study. We did not take the accuracy of

the discontinuity magnitude estimate into account to determine payments in the RD case, only the binary

classification decision.

Table A.11 highlights the different participant pools for the sessions of the expert study and lists the

graphical representation choices in the classification task (Part 1 of the expert study). All graphs in Part 1

used the default Stata axis scaling with no fit lines and a vertical line at x = 0. All but one session of the

expert study used small bins for the RD case. The exception was the session run at Princeton’s Quantitative

Social Science Colloquium in October 2019 in which we used large bins to compare the effect of bin widths

on experts and non-experts.

The distribution of graphs seen by the experts and non-experts is slightly different due to the methods

used to randomize participants’ graphs. The non-expert experiment’s randomization is based around the

order in which the 88 participants for each treatment arm begin the survey. We use the same randomization

mechanism for experts, but repeating the survey in different seminars and online phases results in more

experts at the “beginning” of the graph assignments. Reweighting the data to match the distribution of

graphs seen by non-experts does not meaningfully change any of our results.
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C.3 Eyetracking Study

The eyetracking study consisted of three parts for non-experts and two for experts (see Figure A.35 for de-

tails). For non-experts, Part 1 was the same video- and example-based tutorial used in the RDD experiments.

To avoid eye fatigue, this tutorial was completed on a regular computer. After completing the tutorial, partic-

ipants were moved to a Tobii XL60 eyetracker to complete Part 2, which consisted of 11 graph classification

tasks. Each task was broken up into three separate screens as illustrated in Figure A.36: a white screen with a

cross around the perimeter, a screen showing the graph of interest, and a screen asking participants to report

whether or not they believe the graph featured a discontinuity. Presenting a white screen with a cross avoids

“central fixation bias”: by diverting participants’ gaze towards the perimeter of the screen before showing

a graph, we can rule out that time spent looking at the cutoff is simply an artifact of people’s tendency to

fixate their gaze at the center of the screen when a new stimulus appears. When looking at the graph of

interest, participants could spend as much time as desired before proceeding to the next screen to answer

the classification question. Participants could advance between pages by pressing the space bar in order to

avoid having participants look down at the keyboard or having them use a button on the screen, which might

confound their viewing patterns. Part 3 consisted of verbal feedback on the number of correct classifications

and the corresponding bonus payment. Experts moved directly to the classification task at the eyetracking

terminal without having to complete the tutorial.

To minimize distractions, participants completed the study one-by-one. Participants were paid in Ama-

zon gift cards after each session.

D Subject Characteristics and Performance Predictors

D.1 Demographic Balance and Effects

For our non-expert experiment, we check the validity of our randomization by testing for the balance of

covariates across treatment groups. For each phase, we regress the covariates on treatment group indicators

and test whether all coefficients are equal. Specifically, we test for the balance of sex, education, age cate-

gories, statistical knowledge, passing the attention check, being a first-time participant, and not completing

the experiment. The results are in Tables A.12 through A.15. Across these 44 hypotheses, we cannot reject

balance in all but two instances (4.5% of tests) when using a 5%-level test: college completion and fraction
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of participants aged 23-49 in Phase RDD4. In addition, p-values for joint tests of significance for all covari-

ates within each phase based on Pei, Pischke and Schwandt (2019) are 0.18, 0.50, 0.65, and 0.14 for Phases

RDD1-4 and 0.54 for Phase RKD. The evidence is consistent with successful randomization.

As can be seen in Tables A.17 and A.18, participant demographics such as gender, age, college comple-

tion, statistical knowledge, and being a repeat participant are generally not predictive of performance in the

experiment for both discontinuities and kinks, with insignificant point estimates of a few percentage points.

Out of the 34 factors we test, two have a statistically significant effect on the probability of classifying a

graph correctly (5.9% of tests). In Phase RDD1, failing the attention check is associated with a 5.5pp de-

crease in the probability of classifying a graph correctly. This effect is smaller and insignificant in Phases

RDD2 (4.3pp), RDD3 (-1.2pp), and RDD4 (-1.2pp). In Phase RDD3, being 50 or older correlates with a

9.4pp increase in the probability of classifying a graph correctly. This lack of predictive strength makes any

imbalances in demographics across phases an even smaller concern. It also suggests that comparisons of

treatments across phases are unlikely to be confounded by differing subject pools.

D.2 RD DGP Characteristics

While our results in Section 4 focus on the treatment effects of each graphical parameter, in this section we

focus on other factors of inference performance. In particular, we explore how the characteristics of an RD

DGP affect visual inference.

Figure A.37 plots the density of each RD DGP along its running variable. These distributions are varied.

Some are approximately uniform, some are more normal, and others, such as DGPs 6 and 8, are highly

skewed. Some DGPs show clear changes in density at the policy threshold, some of which were present in

the original data and some of which were introduced by having asymmetric supports prior to our rescaling

the running variable. Figure A.38 compares power functions for the eight DGPs with symmetric supports

prior to normalization with the three with asymmetric supports in Phase RDD4. There is a noticeable

flatness or dip in the share of participants reporting a discontinuity between 0 and 0.1944σ . This pattern

appears in every RD phase, but with only three asymmetric DGPs, this may also be due to the effects

of the individual DGPs rather than something about the effects of normalizing the running variable when

asymmetry is present.

When the distribution of the running variable is uniform, there is no difference between graphs generated

with even spacing and quantile spacing. When the distribution is not uniform, we may expect quantile spac-
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ing to perform better, for example by preventing outlier bins with very few observations in more sparsely

populated regions of the support. To quantify a DGP’s deviation from a uniform distribution, we can com-

pute Gini coefficients based on the distribution of observations within evenly spaced bins.4 We calculate

Gini coefficients for both the IMSE and MV bin width algorithms and take the average across ε for each

RD DGP. Figure A.39 explores how the Gini coefficient interacts with bin spacing to test whether quantile

spacing outperforms equal spacing when the distribution is more skewed by averaging the probability of a

correct response across treatment arms within each DGP. There is no relationship between a DGP’s Gini

coefficient and performance across spacing types. Among DGPs with higher distributional inequality, as

well as for those with intermediate and lower values, neither spacing dominates the other.

In Table A.19, we examine how the first derivatives of each arm of the DGP interact with the direction of

the discontinuity in impacting both size and power. Specifically, we ask whether visual inference performs

better if the discontinuity is positive or negative within a combination of left and right slope signs. For

graphs with nonzero discontinuities, with which we measure power, we regress the binary classification

decision on dummy variables for the negative discontinuity sign within each slopes combination (omitting

the positive discontinuity dummy) with DGP fixed effects and clustering at the participant level. These

regressions show that visual inference performs better when the discontinuity direction matches the signs of

both the left and right derivatives. For example, when the left and right first derivatives are both positive,

power is 11 percentage points worse when the discontinuity is negative than positive (see Figure A.40 for

an illustration). Table A.20 repeats a similar exercise for size over the no-discontinuity graphs. We cannot

include DGP fixed effects here, as they would eliminate the variation needed to identify impacts. Unlike

with power, we do not find any meaningful results for size.

D.3 Dynamic Visual Inference

In this subsection, we investigate participants’ performance over the course of the 11 graphs they see. This

exercise provides evidence to alleviate the concern that participants have a preconceived notion that about

half of the graphs feature a discontinuity, which may bias our results in favor of good size control by RD

visual inference.

First, we trace out the fraction of participants reporting a discontinuity over their 11 graphs. If there

4We do not compute Gini coefficients with quantile spacing, as all bins have about the same number of observations and the
Gini coefficients would all be approximately zero.
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is a consistent upward or downward trend, it would be indicative of participants having a fixed number of

continuous graphs in mind. As shown in Figure A.41, however, the trends are flat in the treatment arm

(small bins and no fit lines) used to compare visual and econometric inference procedures over the four

RDD non-expert phases and in the expert sample.5

We also implement an AR(1) regression to more closely examine the dynamic discontinuity classifica-

tion over the 11 graphs, which Figure A.41 may miss:

Ris = ρRi(s−1)+ ci +uis. (A3)

Ris is the binary variable indicating whether participant i reports a discontinuity in graph s, ci is the individual

fixed effect, and uis is the population residual from the projection of Ris on Ri(s−1) and ci. We expect a

negative ρ if participants believe ex-ante that half of the graphs will feature a discontinuity. In fact, we do

see negative estimates of ρ ranging between -0.1 and -0.2 as reported in column (1) of Table A.21. However,

these estimates are subject to a large-N asymptotic bias of order O(1/S) per Nickell (1981) where S is the

number of graphs. Inverting equation (18) from Nickell (1981), we solve for the bias-corrected estimates

of ρ and report them in column (2) of Table A.21. Although these estimates are still negative, they are

considerably closer to zero. For the four phases of the non-expert Phases RDD1-4, three bias-corrected

estimates are statistically insignificant at the 5% level, while the other one is marginally significant.

Although the estimate of ρ in the expert sample is still significant after bias correction, the fact that it

is the largest in magnitude of the five estimates in Table A.21 is reassuring. Because non-experts appear to

exhibit better size control than experts and are less experienced with RDD graphs, we may be more con-

cerned that the non-experts’ performance is driven by having a fixed number of continuous graphs in mind.

However, this is refuted by the four estimates of ρ from the non-expert sample being smaller. Therefore, we

conclude that the evidence does not support the hypothesis that participants expect half of the graphs to be

continuous, and the good size control of RD visual inference is not a result of it.

5Because we randomize the graph order, the flat discontinuity classification rate is consistent with a flat correct classification
rate, which we also verify in the data. That is, no evidence supports “learning” over the 11 graphs in terms of visual inference
success, which is concordant with our design in which participants find out the total number of correct discontinuity classifications
only after they complete the study.
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E Combining Visual and Econometric Inferences

We present results on the joint distribution of visual and econometric tests in Section 4.4.3, and here we dis-

cuss conceptually the possibility of combining the inferences. That inferences can complement one another

is not unique to visual inference, and it harkens back to the introduction of Fisher’s method (Fisher, 1925

and Mosteller and Fisher, 1948) which combines independent statistical tests by summing the logarithms

of their p-values. Although we do not explicitly ask our participants to state a p-value, we can impute it

from their visual inference decisions. For example, we can follow Habiger and Peña (2011): for each Ri = 1

when seeing a graph that is generated with parameter γ and discontinuity d, we uniformly randomly draw a

p-value, pi, from the interval [0, p̂(γ,d)]; for each Ri = 0, draw pi from [p̂(γ,d),1]. We can then combine the

individual p-values along with that from econometric inference via the proposed method by Wilson (2019),

which allows the p-values to be dependent unlike in Fisher’s method.

To see that using the joint distribution of R and R
θ̂

from Section 4.4.3 can refine the inference on the

discontinuity/kink d, it is easiest to use a Bayesian approach for illustration. Suppose a researcher has an

ex-ante sense of the discontinuity magnitude in an empirical application based on her read of the literature,

which is described by prior density ψ(·). Then she analyzes the data and conducts visual and econometric

inferences and rejects no-discontinuity in both cases, i.e. R = 1 and R
θ̂
= 1. The posterior probability that

the discontinuity magnitude falls in a given set A is∫
z∈A Pr(R = 1,R

θ̂
= 1|z)dψ(z)∫

z Pr(R = 1,R
θ̂
= 1|z)dψ(z)

.

When R and R
θ̂

always agree, i.e. they are perfectly correlated, knowing R does not change the posterior.

As the association between R and R
θ̂

lessens, knowing R provides more information.

Although this is a conceptual demonstration, it does illustrate—through both frequentist and Bayesian

lenses—that combining visual and econometric inference can be useful. This is true especially when the

two inference decisions are not strongly associated, which is generally the case for RKD and when there is

no discontinuity in RDD as shown in Section 4.4.3.

F Eyetracking Study: Details and Additional Analyses

As outlined in Section 3.5 and Appendix C.3, the eyetracking study consists of a fixed sequence of 11 graphs

which we show to both expert and non-expert participants on a Tobii XL60 eyetracking terminal that records
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the location of the subject’s gaze every 17 milliseconds (60 times per second).

Figure A.42 is a visual representation of the eyetracking microdata from one participant looking at a

particular RD graph. It plots a sequence of fixations in connected circles against the RD graph seen by

the participant. The number inside each circle represents the order in which the fixations took place. In

total, this participant fixated on 22 points in the graph over approximately 9 seconds. The time lengths vary

across the fixations and are not represented in the figure. The initial fixation occurred at the upper right

corner of this particular graph for every participant, which was induced by the placement of the cross on the

previous screen (see Figure A.36). We therefore remove the first two fixations from the microdata for every

participant-graph combination. We also remove all saccades before the third fixation. Further, we remove

all eye gazes that lie outside the outermost axis ticks because they mostly coincide with axis labels.

In the resulting data set, we transform the eyegaze pixel coordinate data into units of the (x,y) variables

of each graph and compute a set of summary measures from the eyetracking microdata. We present the

means of these measures in Table A.10. As mentioned in Section 4.5, the experts perform better than the

non-experts. The 15 percentage point expert-non-expert success gap translates to 1.7 graphs out of the 11

in total. As seen in the second and third rows of the table, experts spend more than twice as long on each

graph and have more than twice as many fixations than non-experts. Next, we attempt to measure the “visual

bandwidth” by calculating the horizontal range and horizontal standard deviation of the eyegaze coordinates.

Out of a maximum horizontal range of 2 (recall that the support of the x-variable is normalized to be between

-1 and 1), the overall average is 1.19, with the experts covering a 30% longer distance. The overall average

standard deviation of the eyegazes is much smaller at 0.24, and again we see experts using a larger ocular

bandwidth.

The next set of measures assesses the extent to which participants visually trace out the conditional

expectation function. First, we compute the square root of the eyegaze IMSE, the RIMSE. The IMSE is

the average squared deviation of the eyegaze from the true underlying CEF of the DGP, and we scale the

RIMSE by σ . The average RIMSE is 0.25σ and shows little difference between experts and non-experts.

Second, we fit RD regression models to the eyegaze data using CCT’s rdrobust package and record the

conventional and bias-corrected local linear estimates. We then compute the absolute deviation of these

estimates from the true discontinuity in the DGP and, consistent with our discontinuity specification in

Section 3.2, scale this deviation by σ . One complication is that rdrobust cannot compute the bandwidths

when there are few distinct eyegaze points, and the resulting conventional and bias-corrected local estimates
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are both missing. Not surprisingly, there are more missing estimates for non-experts (13%, or 13 out of 99

graphs) than experts (2%, or 1 out of 66 graphs) given that experts spend more time on each graph and exhibit

a larger number of fixations. In these instances, we replace the conventional and bias-corrected estimates by

global linear and global quadratic estimates, respectively.6 The average deviation is 0.23σ for conventional

estimates and 0.24σ for bias-corrected estimates. The average deviation is slightly lower among experts

for conventional estimates and more so for bias-corrected estimates. However, this difference is driven by

the global regression estimates—within the 151 graphs for which local RD estimates can be computed by

rdrobust, the difference in the deviations between experts and non-experts virtually disappears.

We test for differences in the summary measures between experts and non-experts, accounting for the

potential covariance for the same individual across graphs by clustering at the participant level. Because of

the small number of participants, we implement the test via wild bootstrap (see Cameron and Miller, 2015

for a review). As highlighted in Section 4.5, the only measures that are significantly different between the

experts and non-experts at the 5% level are time spent on each graph and whether the local RD eyegaze esti-

mates are available. The difference in one other eyegaze measure, horizontal range, is statistically significant

at the 10% level, and so is the difference in the outcome variable, correct discontinuity classification.

For our prediction exercises, we split the data into a training sample and a testing sample, use the training

sample to train the models, and compute the out-of-sample prediction error in the testing sample.7 To gauge

the robustness of the prediction results, we use two schemes to split our training and testing samples. In

scheme A, we randomly select data from two-thirds of the 165 graphs to be the training sample. In scheme

B, we randomly select all data from two-thirds of the participants (six of the nine non-experts and four of

the six experts) to be the training sample. In both schemes, the out-of-sample prediction error rates range

between 25% and 40%. In scheme A, the respective error rates are 25%, 40%, 33%, and 33% for penalized

logit, pruned tree, bagging, and random forest. They are 31%, 29%, 33% and 29% in scheme B.

The penalized logit coefficient path plots in Figure A.43 trace out the coefficients on the predictors

as functions of the penalty parameter (Lambda). In scheme A, the first nine predictors to turn on (become

nonzero) are eight of the graph identifiers and the expert indicator. In scheme B, the graph identifiers are also

among the first to turn on, except the coefficients on RIMSE and the absolute deviation of the bias-corrected

6The bias-corrected local linear estimate obtained by using the same main and pilot bandwidth from Calonico, Cattaneo and
Titiunik (2014) is numerically equivalent to the local quadratic estimate with the same bandwidth. Therefore, we can alternatively
think of these global regressions as producing conventional and bias-corrected local linear estimates by using a large bandwidth.

7We select the tuning parameter in penalized-logit and pruned tree by five-fold cross validation.
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RD estimate also become nonzero at high values of the penalty parameter. In fact, both coefficients are

negative, indicating that higher RIMSE and absolute deviation of eyegaze RD estimates are associated with

a lower probability of successful inference, which makes intuitive sense. However, these are not robust

associations: in scheme A, the RIMSE coefficient is instead positive, and although the coefficient on the

absolute deviation of the bias-corrected estimate is still negative, the model selects this variable only when

the penalty parameter is low, and the variable appears to counteract the positive coefficient on the absolute

deviation of the conventional estimate. We see this offsetting pattern of the conventional and bias-corrected

RD estimates in scheme B as well. Analogously, the horizontal eyegaze standard deviation and horizontal

range also have opposite signs from the penalized logit model, and it is unclear whether a larger or smaller

visual bandwidth is conducive to successful inference.

The tree-based methods paint a broadly similar picture on the importance of the various predictors as

penalized logit. In both training-testing schemes, the pruned tree is a stump and only splits by the Graph1

indicator (graph numbers also correspond to DGP numbers, i.e. Graph1 is from RD DGP1). Figure A.44

presents the importance plots from bagging and random forest models, where each variable’s importance is

measured by the decrease in prediction accuracy if the variable is omitted from the model (see Friedman,

Hastie and Tibshirani, 2001 for details). The relative importance of the eyegaze measures varies by method

and scheme, but the Graph1 and Graph4 indicators consistently stand out.

We also try re-running the prediction exercise after removing the four graphs that are “too easy” or “too

hard,” i.e. for which at least 14 out of 15 participants classify discontinuity correctly/incorrectly (Graph 1 is

too hard, while Graphs 4, 10 and 11 are too easy). The resulting prediction error rates increase to between

40% and 50%, but the most important predictors still appear to be several graph identifiers. Our visual

attention summary measures continue to lack robust predictive potency within the remaining seven graphs.

Based on these findings, we cannot pinpoint ocular patterns that robustly predict successful visual infer-

ence. We conclude that performance heterogeneity in visual inference is likely driven by the processing of

visual signals and not by their acquisition as quantified by our eyegaze summary measures.
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Appendix Tables

Table A.1: Timeline of RDD Experiments

Phase Holding fixed Treatments Date
# participants

recruited
# completions

RDD1 bin spacing: ES binwidth: large vs small
November 13-16,

2018
4*88=352 330 (94%)

fitlines: no #
vertical line: yes axis scaling: default vs 2x default

RDD2 scaling: default binwidth: large vs small
February 11-12,

2019
4*88=352 325 (92%)

fitlines: no #
vertical line: yes bin spacing: ES vs QS

RDD3 binwidth: small fitlines: no; center line: yes
February 27,

2019
3*88=264 248 (94%)

bin spacing: ES fitlines: no; center line: no
scaling: default fitlines: yes; center line: yes

RDD4 bin spacing: ES binwidth: large vs small
October 28-29,

2019
4*88=352 340 (97%)

scaling: default #
vertical line: yes fitlines: yes vs no

Table A.2: Timeline of RKD Experiments

Phase Holding fixed
Treatments
(between subject)

Treatments
(within subject)

Date
# participants

recruited
# completions

Pilot bin spacing: QS binwidth: large vs small derivative vs level
April 24-25,

2019
4*72=288 282 (98%)

fit lines: no #
vertical line: yes detrending: yes vs no
scaling: default

RKD bin spacing: QS binwidth: large vs small derivative vs level
June 26-28,

2019
4*72=288 250 (87%)

fit lines: no #
vertical line: yes detrending: yes vs no
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Table A.3: Treatment Effects: Phase RDD1

Dependent variable: player reports discontinuity
True discontinuity magnitude =

0 0.1944 σ 0.324 σ 0.54 σ 0.9 σ 1.5 σ

Large bin; Default y-axis 0.197 0.209 0.177 0.140 -0.024 -0.012
(0.039) (0.045) (0.042) (0.046) (0.030) (0.019)

Small bin; Large y-axis -0.024 -0.018 -0.056 0.008 -0.034 -0.035
(0.029) (0.043) (0.042) (0.043) (0.029) (0.026)

Large bin; Large y-axis 0.142 0.186 0.120 0.093 0.013 -0.001
(0.036) (0.040) (0.042) (0.042) (0.025) (0.017)

Small bin; Default y-axis (Mean) 0.054 0.181 0.367 0.669 0.922 0.988
Number of graphs 660 660 660 660 660 330
Number of players 330 330 330 330 330 330

Note: We have a stratified randomized experiment, where each of the 11 strata is de-

termined by the DGPs seen for every discontinuity magnitude. The treatment effect

estimates come from regressing the participants’ responses on treatment indicators and

strata fixed effects. We obtain standard errors using the procedure from Bugni, Canay

and Shaikh (2019) for stratified experiments, which are asymptotically exact.

Table A.4: Treatment Effects: Phase RDD2

Dependent variable: player reports discontinuity
True discontinuity magnitude =

0 0.1944 σ 0.324 σ 0.54 σ 0.9 σ 1.5 σ

Large bin; Equal spacing 0.256 0.207 0.204 0.155 0.048 0.011
(0.042) (0.039) (0.045) (0.039) (0.033) (0.029)

Small bin; Quantile spacing 0.034 0.009 -0.012 -0.008 -0.030 -0.013
(0.033) (0.039) (0.046) (0.046) (0.036) (0.033)

Large bin; Qunatile spacing 0.157 0.185 0.217 0.138 0.030 0.024
(0.038) (0.040) (0.046) (0.039) (0.031) (0.023)

Small bin; Equal spacing (Mean) 0.054 0.169 0.355 0.657 0.892 0.964
Number of graphs 650 650 650 650 650 325
Number of players 325 325 325 325 325 325

Note: We have a stratified randomized experiment, where each of the 11 strata is de-

termined by the DGPs seen for every discontinuity magnitude. The treatment effect

estimates come from regressing the participants’ responses on treatment indicators and

strata fixed effects. We obtain standard errors using the procedure from Bugni, Canay

and Shaikh (2019) for stratified experiments, which are asymptotically exact.

Table A.5: Treatment Effects: Phase RDD3

Dependent variable: player reports discontinuity
True discontinuity magnitude =

0 0.1944 σ 0.324 σ 0.54 σ 0.9 σ 1.5 σ

Fit line; Vertical line 0.142 0.215 0.172 0.051 0.057 -0.002
(0.038) (0.046) (0.044) (0.045) (0.029) (0.025)

No fit line; No vertical line 0.017 0.012 -0.007 -0.052 -0.026 -0.023
(0.024) (0.043) (0.045) (0.043) (0.031) (0.025)

No fit line; Vertical line (Mean) 0.037 0.159 0.348 0.634 0.860 0.976
Number of graphs 496 496 496 496 496 248
Number of players 248 248 248 248 248 248

Note: We have a stratified randomized experiment, where each of the 11 strata is de-

termined by the DGPs seen for every discontinuity magnitude. The treatment effect

estimates come from regressing the participants’ responses on treatment indicators and

strata fixed effects. We obtain standard errors using the procedure from Bugni, Canay

and Shaikh (2019) for stratified experiments, which are asymptotically exact.
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Table A.6: Treatment Effects: Phase RDD4

Dependent variable: player reports discontinuity
True discontinuity magnitude =

0 0.1944 σ 0.324 σ 0.54 σ 0.9 σ 1.5 σ

Large bin; No fit line 0.145 0.283 0.223 0.239 0.074 0.027
(0.038) (0.044) (0.047) (0.042) (0.033) (0.030)

Small bin; Fit line -0.019 0.088 0.047 0.059 0.024 0.002
(0.030) (0.042) (0.049) (0.046) (0.036) (0.034)

Large bin; Fit line 0.230 0.300 0.239 0.207 0.058 0.003
(0.045) (0.046) (0.047) (0.044) (0.034) (0.034)

Small bin; No fit line (Mean) 0.074 0.154 0.395 0.611 0.870 0.951
Number of graphs 680 680 680 680 680 340
Number of players 340 340 340 340 340 340

Note: We have a stratified randomized experiment, where each of the 11 strata is de-

termined by the DGPs seen for every discontinuity magnitude. The treatment effect

estimates come from regressing the participants’ responses on treatment indicators and

strata fixed effects. We obtain standard errors using the procedure from Bugni, Canay

and Shaikh (2019) for stratified experiments, which are asymptotically exact.

Table A.7: Treatment Effects: Phase RKD (Levels)

Dependent variable: player reports kink
True kink magnitude =

0 0.1944 ξ 0.324 ξ 0.54 ξ 0.9 ξ

Raw; Big bin -0.008 0.054 0.107 -0.003 -0.084
(0.040) (0.046) (0.052) (0.057) (0.064)

Residual; Small bin 0.013 0.002 0.046 0.111 -0.031
(0.041) (0.048) (0.057) (0.053) (0.058)

Residual; Big bin 0.018 0.242 0.291 0.175 -0.015
(0.041) (0.051) (0.055) (0.054) (0.059)

Raw; Small bin (Mean) 0.147 0.248 0.352 0.543 0.827
Number of graphs 614 608 607 614 307
Number of players 250 250 250 250 250

Note: We have a stratified randomized experiment, where each of the 9 strata is de-

termined by the DGPs seen for every discontinuity magnitude. The treatment effect

estimates come from regressing the participants’ responses on treatment indicators and

strata fixed effects. We obtain standard errors using the procedure from Bugni, Canay

and Shaikh (2019) for stratified experiments, which are asymptotically exact.

Table A.8: Treatment Effects: Phase RKD (Derivatives)

Dependent variable: player reports kink
True kink magnitude =

0 0.1944 ξ 0.324 ξ 0.54 ξ 0.9 ξ

Derivative; Big bin 0.143 -0.004 0.089 0.153 0.302
(0.040) (0.041) (0.045) (0.042) (0.058)

Derivative; Small bin (Mean) 0.235 0.312 0.294 0.306 0.335
Number of players 250 250 250 250 250
Number of graphs 614 608 607 614 307

Note: We have a stratified randomized experiment, where each of the 9 strata is de-

termined by the DGPs seen for every discontinuity magnitude. The treatment effect

estimates come from regressing the participants’ responses on treatment indicators and

strata fixed effects. We obtain standard errors using the procedure from Bugni, Canay

and Shaikh (2019) for stratified experiments, which are asymptotically exact.
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Table A.9: Fisher’s Exact Test of Association: p-values (One-Sided)

Panel A: Expert Visual vs Econometric Inferences (RDD)

Estimator for Econometric Inference

Discontinuity |d| PQ IK CCT AK

0 0.727 0.231 0.616 0.695

0.1944σ 0.000 0.000 0.000 0.000

0.324σ 0.000 0.000 0.000 0.000

0.54σ 0.000 0.000 0.001 0.000

0.9σ 0.073 . 0.042 0.112

1.5σ . . . .

Panel B: Expert Visual vs Econometric Inferences (RKD)

Estimator for Econometric Inference

Kink |d| PQ CCT1 CCT2 CCT3 CCT4

0 0.289 0.707 . 0.613 0.004

0.1944ξ 0.124 0.418 0.432 0.571 0.076

0.324ξ 0.456 0.212 0.600 0.080 0.194

0.54ξ 0.087 0.158 0.521 0.571 0.070

0.9ξ 0.191 0.572 0.626 0.258 0.601

Note: Missing values indicate that a test always accepts or rejects the null hy-

pothesis. The five columns correspond to the five estimators underlying the

power functions in Figure 6. PQ is “Piecewise Quintic”; CCT1 is “CCT Ro-

bust”; CCT2 is “CCT Rob. Lin. w/ Reg. Tri.”; CCT3 is “CCT Conv. Quad.

Unif.”; CCT4 is “CCT Conv. Lin. Unif.”.

Table A.10: Summary Measures of Eyegaze Data

(1) (2) (3) (4)
p -value of difference
between (1) and (2)

Number of Correct Classifications 0.68 0.53 0.59 0.078
Time Spent per Graph in Seconds 16.8 6.9 10.9 0.046
Number of Fixations per Graph 45.8 20.5 30.6 0.112
Horizontal Range of Eyegazes 1.40 1.05 1.19 0.090
Horizontal Standard Deviation of Eyegazes 0.26 0.22 0.24 0.268
RIMSE of Eyegazes (scaled) 0.25 0.26 0.25 0.615
Conventional Local Linear RD Estimate from Eyegazes
       Absolute Deviation from True Discontinuity (scaled) 0.22 0.23 0.23 0.136
       Discontinuity Estimate Unavailable 0.02 0.13 0.08 0.032
Bias-corrected Local Linear RD Estimate from Eyegazes
       Absolute Deviation from True Discontinuity: Bias-corrected RD Estimate 0.22 0.25 0.24 0.103
       Discontinuity Estimate Unavailable 0.02 0.13 0.08 0.032

Number of Participants 6 9 15
Number of Graphs 66 99 165

Average across graphs

Experts Non-experts Overall

Note: The statistical test in column (4) accounts for correlation across the same participant via clustering, and we use wild bootstrap

due to the small number of clusters.
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Table A.11: Timeline of Expert Study

Participant pool
Binwidth choice in
Part 1

Date
# participants

recruited
# completions

Cornell Econometrics
Workshop (RD only)

RD: small binwidth,
even spacing

May 7, 2019 - 12

UC Irvine Econometrics
Series (RD only)

RD: small binwidth,
even spacing

May 21, 2019 - 15

Princeton Quantitative Social
Science Colloquium (RD only)

RD: large binwidth,
even spacing

October 11, 2019 - 48

NBER + IZA (RD only, Pilot)
RD: small binwidth,
even spacing

July 28 - August 2, 2019 101 7 (7%)

NBER + IZA Email list
(RD and RK, Pilot)

RD: small binwidth,
even spacing

August 12 - 19, 2019 200 21 (11%)

RK: big binwidth,
quantile spacing

NBER + IZA Email list
(RD and RK)

RD: small binwidth,
even spacing

August 26 -
September 3, 2019

1,000 94 (9%)

RK: big binwidth,
quantile spacing

Table A.12: Covariate Means and Balance across Treatment Arms: Phase RDD1

T1 T2 T3 T4 p-value

Female 0.687 0.738 0.759 0.688 0.649
Completed college 0.518 0.512 0.482 0.625 0.268
Age 18 to 22 0.422 0.571 0.554 0.425 0.088
Age 23 to 49 0.494 0.381 0.398 0.487 0.318
Age 50 or older 0.060 0.048 0.048 0.087 0.742
Graduate stats knowledge 0.145 0.119 0.133 0.050 0.091
Passed attention check 0.867 0.857 0.843 0.912 0.516
Attrition rate 0.057 0.045 0.057 0.091 0.690
Participants 83 84 83 80

Note: The joint p-value for the significance of the covariates is 0.175.

Table A.13: Covariate Means and Balance across Treatment Arms: Phase RDD2

T1 T2 T3 T4 p-value

Female 0.614 0.623 0.617 0.726 0.325
Completed college 0.494 0.429 0.543 0.512 0.526
Age 18 to 22 0.518 0.584 0.481 0.488 0.548
Age 23 to 49 0.386 0.364 0.481 0.429 0.447
Age 50 or older 0.084 0.039 0.037 0.071 0.485
Graduate stats knowledge 0.072 0.143 0.099 0.119 0.499
Passed attention check 0.928 0.870 0.877 0.940 0.306
First time player 0.711 0.805 0.802 0.762 0.466
Attrition rate 0.057 0.125 0.080 0.045 0.264
Participants 83 77 81 84

Note: The joint p-value for the significance of the covariates is 0.496.
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Table A.14: Covariate Means and Balance across Treatment Arms: Phase RDD3

T1 T2 T3 p-value

Female 0.683 0.725 0.616 0.323
Completed college 0.659 0.650 0.558 0.339
Age 18 to 22 0.439 0.463 0.523 0.529
Age 23 to 49 0.488 0.512 0.419 0.449
Age 50 or older 0.073 0.025 0.047 0.345
Graduate stats knowledge 0.159 0.113 0.070 0.184
Passed attention check 0.902 0.900 0.907 0.988
First time player 0.488 0.500 0.453 0.823
Attrition rate 0.068 0.091 0.023 0.087
Participants 82 80 86

Note: The joint p-value for the significance of the covariates is 0.653.

Table A.15: Covariate Balance across Treatment Arms: Phase RDD4

T1 T2 T3 T4 p-value

Female 0.654 0.782 0.733 0.744 0.327
Completed college 0.543 0.655 0.442 0.535 0.040
Age 18 to 22 0.568 0.471 0.663 0.570 0.084
Age 23 to 49 0.420 0.506 0.291 0.407 0.031
Age 50 or older 0.012 0.023 0.035 0.023 0.797
Graduate stats knowledge 0.160 0.115 0.070 0.047 0.067
Passed attention check 0.914 0.897 0.953 0.907 0.427
First time player 0.556 0.563 0.628 0.581 0.771
Attrition rate 0.080 0.011 0.023 0.023 0.185
Participants 81 87 86 86

Note: The joint p-value for the significance of the covariates is 0.1365.

Table A.16: Covariate Means and Balance across Treatment Arms: Phase RKD

T1 T2 T3 T4 p-value

Female 0.758 0.721 0.705 0.710 0.903
Completed college 0.515 0.492 0.541 0.500 0.952
Age 18 to 22 0.667 0.574 0.557 0.597 0.588
Age 23 to 49 0.288 0.361 0.393 0.387 0.554
Age 50 or older 0.030 0.066 0.016 0.016 0.522
Graduate stats knowledge 0.030 0.115 0.131 0.113 0.052
Passed attention check 0.909 0.967 0.951 0.919 0.466
First time player 0.455 0.410 0.557 0.468 0.417
Attrition rate 0.250 0.307 0.307 0.295 0.804
Participants 66 61 61 62

Note: The joint p-value for the significance of the covariates is 0.545.
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Table A.17: Correlations of Correct Classification with Subject Covariates for RD

Phase I Phase II Phase III Phase IV

Female -0.001 -0.007 -0.019 0.017
(0.014) (0.014) (0.018) (0.017)

Completed college 0.004 -0.018 -0.025 0.015
(0.019) (0.018) (0.019) (0.023)

Age 23 to 49 -0.006 0.003 -0.012 0.009
(0.021) (0.019) (0.021) (0.023)

Age 50 or older 0.004 0.037 0.094 0.055
(0.026) (0.031) (0.033) (0.073)

Graduate stats knowledge -0.013 0.030 0.053 -0.048
(0.022) (0.022) (0.028) (0.029)

Passed attention check 0.055 0.043 -0.014 -0.011
(0.023) (0.026) (0.029) (0.031)

First time player NA 0.000 -0.001 0.018
(NA) (0.016) (0.017) (0.015)

Joint test p-value 0.321 0.460 0.009 0.389

Table A.18: Correlations of Correct Classification with Subject Covariates for RK

RK Phase I

Female -0.009
(0.018)

Completed college -0.030
(0.021)

Age 23 to 49 -0.003
(0.023)

Age 50 or older -0.047
(0.035)

Graduate stats knowledge 0.017
(0.033)

Passed attention check -0.013
(0.039)

Joint test p-value 0.347

Table A.19: Predictions of Power on DGP Characteristics

Phase RDD1 Phase RDD2 Phase RDD3 Phase RDD4

LHS deriv-, RHS deriv-, discont- 0.244 0.262 0.267 0.308
(0.032) (0.033) (0.039) (0.031)

LHS deriv+, RHS deriv-, discont- -0.005 0.029 -0.020 0.096
(0.039) (0.042) (0.047) (0.041)

LHS deriv-, RHS deriv+, discont- 0.024 0.103 0.173 0.102
(0.058) (0.057) (0.068) (0.054)

LHS deriv+, RHS deriv+, discont- -0.111 -0.169 -0.103 -0.110
(0.022) (0.022) (0.026) (0.022)
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Table A.20: Predictions of Size on DGP Characteristics

Phase RDD1 Phase RDD2 Phase RDD3 Phase RDD4

LHS deriv-, RHS deriv- 0.052 0.049 -0.003 0.093
(0.035) (0.037) (0.029) (0.036)

LHS deriv+, RHS deriv- -0.040 -0.018 0.072 -0.048
(0.032) (0.035) (0.037) (0.032)

LHS deriv-, RHS deriv+ -0.124 -0.168 -0.032 -0.074
(0.026) (0.022) (0.033) (0.039)

LHS deriv+, RHS deriv+ (Mean) 0.141 0.168 0.077 0.154
(0.020) (0.022) (0.018) (0.020)

Table A.21: Dynamic Discontinuity Classification: AR(1) Regression

(1) (2)

Phase Estimate of ρ from Eq. (A3) Bias-Corrected Estimate of ρ

RDD1 -0.127 -0.041

(0.038) (0.046)

RDD2 -0.170 -0.088

(0.035) (0.039)

RDD3 -0.099 -0.009

(0.029) (0.036)

RDD4 -0.126 -0.034

(0.035) (0.041)

Expert -0.205 -0.126

(0.032) (0.037)

Note: Standard errors are in parentheses. Standard errors in both columns are

clustered at the participant level, and those in column (2) additionally corrects

the O(1/S) bias from regression (A3) by inverting equation (18) of Nickell

(1981).

Table A.22: Timeline of Eyetracking Study

Participant pool Date # participants recruited # completions

Nonexperts July 15 & 17, 2019 11 10
Experts July 30, 2019 6 6
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Appendix Figures

Figure A.1: Same Data with Different Axis Scales for Correlation Detection
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Figure A.2: Original Plot vs Plot with Residualized Y

(a) Original (b) Residualized
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Figure A.3: Original Plot vs Plot of Estimated First Derivatives

(a) Original (b) Estimated First Derivatives

Figure A.4: RKD: Even Spacing vs Quantile Spacing Example

(a) Even Spacing (b) Quantile Spacing

32



Figure A.5: RDD DGP Conditional Expectation Functions
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Figure A.6: RKD DGP Conditional Expectation Functions
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Figure A.7: Lineup Protocol Graph: RD DGP10

Note: One of the 20 graphs is produced from the real data. The other 19 are produced from simulated data drawn from

the DGP calibrated to the real data.
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Figure A.8: Lineup Protocol Graph: RD DGP3

Note: One of the 20 graphs is produced from the real data. The other 19 are produced from simulated data drawn from

the DGP calibrated to the real data.
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Figure A.9: RDD Phases: Power Functions by DGP
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Figure A.10: RDD Phases: Power Functions by DGP against Asymptotic t-Statistics

0
.2

.4
.6

.8
1

0 1 2 3 4 5

DGP 1

0
.2

.4
.6

.8
1

0 2 4 6 8

DGP 2

0
.2

.4
.6

.8
1

0 5 10 15 20

DGP 3

0
.2

.4
.6

.8
1

0 5 10 15 20

DGP 4

0
.2

.4
.6

.8
1

0 2 4 6

DGP 5

0
.2

.4
.6

.8
1

0 1 2 3 4

DGP 6

0
.2

.4
.6

.8
1

0 5 10 15

DGP 7

0
.2

.4
.6

.8
1

0 5 10 15

DGP 8

0
.2

.4
.6

.8
1

0 5 10 15

DGP 9

0
.2

.4
.6

.8
1

0 2 4 6 8

DGP 10

0
.2

.4
.6

.8
1

0 5 10 15 20 25

DGP 11

Phase RDD1

Small Bins, Normal Scale Small Bins, Large Scale
Large Bins, Normal Scale Large Bins, Large Scale

0
.2

.4
.6

.8
1

0 1 2 3 4 5

Phase II: 1

0
.2

.4
.6

.8
1

0 2 4 6 8

Phase II: 2

0
.2

.4
.6

.8
1

0 5 10 15 20

Phase II: 3

0
.2

.4
.6

.8
1

0 5 10 15 20

Phase II: 4

0
.2

.4
.6

.8
1

0 2 4 6

Phase II: 5

0
.2

.4
.6

.8
1

0 1 2 3 4

Phase II: 6

0
.2

.4
.6

.8
1

0 5 10 15

Phase II: 7

.2
.4

.6
.8

1

0 5 10 15

Phase II: 8

0
.2

.4
.6

.8
1

0 5 10 15

Phase II: 9

0
.2

.4
.6

.8
1

0 2 4 6 8

Phase II: 10

0
.2

.4
.6

.8
1

0 5 10 15 20 25

Phase II: 11

Phase RDD2

Small Bins, Equal Spacing Small Bins, Quantile Spacing
Large Bins, Equal Spacing Large Bins, Quantile Spacing

0
.2

.4
.6

.8
1

0 1 2 3 4 5

DGP 1

0
.2

.4
.6

.8
1

0 2 4 6 8

DGP 2

0
.2

.4
.6

.8
1

0 5 10 15 20

DGP 3

0
.2

.4
.6

.8
1

0 5 10 15 20

DGP 4

0
.2

.4
.6

.8
1

0 2 4 6

DGP 5

0
.2

.4
.6

.8
1

0 1 2 3 4

DGP 6

0
.2

.4
.6

.8
1

0 5 10 15

DGP 7

0
.2

.4
.6

.8
1

0 5 10 15

DGP 8

0
.2

.4
.6

.8
1

0 5 10 15

DGP 9

0
.2

.4
.6

.8
1

0 2 4 6 8

DGP 10

0
.2

.4
.6

.8
1

0 5 10 15 20 25

DGP 11

Phase RDD3

No Fit Line, Vertical Line Fit Line, Vertical Line
No Fit Line, No Vertical Line

0
.2

.4
.6

.8
1

0 1 2 3 4 5

DGP 1

0
.2

.4
.6

.8
1

0 2 4 6 8

DGP 2

0
.2

.4
.6

.8
1

0 5 10 15 20

DGP 3

0
.2

.4
.6

.8
1

0 5 10 15 20

DGP 4

0
.2

.4
.6

.8
1

0 2 4 6

DGP 5

0
.2

.4
.6

.8
1

0 1 2 3 4

DGP 6

0
.2

.4
.6

.8
1

0 5 10 15

DGP 7

0
.2

.4
.6

.8
1

0 5 10 15

DGP 8

0
.2

.4
.6

.8
1

0 5 10 15

DGP 9

0
.2

.4
.6

.8
1

0 2 4 6 8

DGP 10

0
.2

.4
.6

.8
1

0 5 10 15 20 25

DGP 11

Phase RDD4

Small Bins, No Fit Line Small Bins, Fit Line
Large Bins, No Fit Line Large Bins, Fit Line

37



Figure A.11: RKD Phase: Power Functions By Quintic Type
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Figure A.12: RD: Expert vs Non-Expert Performance Differences
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Figure A.13: RK: Expert vs Non-Expert Performance Differences
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Figure A.14: RD: Expert Preferences and Beliefs regarding Non-Expert Performance
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Figure A.15: Phase RDD4: Power Functions for DGP Shown to Experts
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Figure A.16: RK: Expert Preferences and Beliefs regarding Non-Expert Performance
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Figure A.17: RD: Expert Visual vs Econometric Inference Power Function Differences
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Figure A.18: RD: Expert Visual vs Size-Adjusted Econometric Inference Power Function Differences
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Figure A.19: RMSE of Point Estimates and MSE Decomposition by DGP
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Figure A.20: RK: Expert Visual vs Econometric Inferences Power Function Differences
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Figure A.21: Lineup Protocols for DGPs Specified Before and After Adding Noise to the Running Variable

Figure A.22: Comparison between CEFs from Original Microdata and Adding Noise to Running Variable
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Figure A.23: Video Tutorial Attention Check

Figure A.24: Example Tasks

(a) Example 1 (b) Example 1 - Feedback
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Figure A.25: Example 4 - Feedback and Navigation Buttons
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Figure A.26: Classification Screen

(a) Incentives

(b) Classification Task
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Figure A.27: Results Screen Example

Figure A.28: Sequence of Events - RDD Experiments

Video
Tutorial Examples 11 Paid Tasks

T1 T11

Exit
Survey Results

Figure A.29: Sequence of Events - RKD Experiments
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Figure A.30: Sequence of Events - Expert Study
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Figure A.31: Expert Survey - Part 1 Introduction
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Figure A.32: Expert Survey - Part 1 Classification Task

(a) RD Case

(b) Expert Survey - Part 1 Task Screen (RK case)

50



Figure A.33: Expert Survey - Part 2 Instructions

(a) RD Case

(b) Expert Survey - Part 1 Task Screen (RK case)
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Figure A.34: Expert Survey - Part 2 Decision Screen

Figure A.35: Sequence of Events - Eyetracking Study
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Figure A.36: Sequence of Screens for Each Classification Task on Eyetracking Terminal
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Figure A.37: RD DGP Histograms
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Figure A.38: Comparison between Power Functions for Phase RDD4 by Symmetry of DGP Supports
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Figure A.39: DGP Gini Coefficients and Non-Expert Performance
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Figure A.40: Discontinuity Easier to Detect When Both Slopes at Cutoff are in the Same Direction as the
Discontinuity

(a) Positive Slopes and Positive Discontinuity (b) Positive Slopes and Negative Discontinuity
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Figure A.41: RDD Discontinuity Classifications over 11 Graphs
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Figure A.42: Visual Representation of Eyetracking Data
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Figure A.43: Penalized Logit Coefficient Path Plots
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Note: The full names of the abbreviated variables are: “TmSpntnG” is Time Spent per Graph in Seconds,
“NmbrOfFx” is Number of Fixations per Graph, “HrzntlRn” is Horizontal Range of Eyegaze, “HrzntlSD”
is Horizontal Standard Deviation of Eyegaze, “EygzRDcl” is Absolute Deviation of Conventional Local
Linear RD Estimates from True Discontinuity (scaled by σ ), “EygzRDbc” is Absolute Deviation of Bias-
corrected Local Linear RD Estimates from True Discontinuity, and “EygzRDms” is Discontinuity Estimates
Unavailable.
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Figure A.44: Bagging and Random Forest Importance Plots
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Note: The full names of the abbreviated variables are: “EyegazeRD_cl” is Absolute Deviation of Conven-
tional Local Linear RD Estimates from True Discontinuity (scaled by σ ), “EyegazeRD_bc” is Absolute
Deviation of Bias-corrected Local Linear RD Estimates from True Discontinuity, and “EyegazeRDmissing”
is Discontinuity Estimates Unavailable.
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