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Abstract

It has become standard practice to use local linear regressions in regression discontinuity designs.
This paper highlights that the same theoretical arguments used to justify local linear regression suggest
that alternative local polynomials could be preferred. We show in simulations that the local linear estima-
tor is often dominated by alternative polynomial specifications. Additionally, we provide guidance on the
selection of the polynomial order. The Monte Carlo evidence shows that the order-selection procedure
(which is also readily adapted to fuzzy regression discontinuity and regression kink designs) performs
well, particularly with large sample sizes typically found in empirical applications.
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1 Introduction

Regression discontinuity designs (RD designs or RDD) are widely used in empirical social science research

in recent years. Among the important reasons for its appeal are that the research design permits clear and

transparent identification of causal parameters of interest, and that the design itself has testable implications

similar in spirit to those in a randomized experiment (Lee, 2008 and Lee and Lemieux, 2010).

Although the identification strategy is both transparent and credible in principle, many methods that can

be used to estimate the same causal parameter of interest. The key challenge is to estimate the values of the

conditional expectation functions at the discontinuity cutoff without making strong assumptions about the

shape of that function, the violation of which could lead to misleading inferences.

Typical practice in applied research is to employ a local regression estimator, with local linear being

the most common. We surveyed leading economics journals between 1999 and 2017, and found that of the

110 studies that employed RDD, 76 use a local polynomial regression as their main specification, compared

to 26 studies that report a global regression estimator as their main specification.1 Out of the 76 studies

that use local regression estimators, local linear is the modal choice and applied as the main specification

in 45 studies (59%). Empirically, the reliance on local linear appears to be accelerating: out of the 51

studies published since 2011 with a local main specification, 36 apply local linear (71%). Meanwhile,

recent econometric studies on RD estimation, whether focusing on bandwidth selection (e.g. Imbens and

Kalyanaraman, 2012) or improving inference (e.g. Calonico, Cattaneo and Titiunik, 2014b and Armstrong

and Kolesár, forthcoming), have taken the polynomial order as given, often treating local linear as the

default.2

Despite the theoretical and practical focus on local linear, it has long been recognized that the choice of

polynomial order can in principle be as consequential as the choice of bandwidth (e.g., see discussion in Fan

and Gijbels, 1996). More recently, Hall and Racine (2015) call into question the practice of choosing the

polynomial order in an ad hoc fashion, and suggest instead a cross-validation method to choose the poly-

1We include American Economic Review, American Economic Journals, Econometrica, Journal of Political Economy, Journal
of Business and Economic Statistics, Quarterly Journal of Economics, Review of Economic Studies, and Review of Economics
and Statistics in our survey. We cannot classify whether the main specification is local or global for eight of the 110 studies; see
Appendix Table A.1 for detailed tabulation.

2Another recent paper by Imbens and Wager (forthcoming) proposes an alternative to the local polynomial regression approach.
Specifically, it finds the linear RD estimator through numerical convex optimization that minimizes the worst-case-scenario mean-
squared-error over the class of functions with a known global bound on the second derivative. A more detailed discussion is in
Appendix section C.
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nomial order jointly with the bandwidth.3 With this as background, the relevant questions for researchers

interested in applying RD are: 1) To what extent does the theory of nonparametric estimation give us rea-

sons to expect local linear to outperform other polynomial orders? 2) To what extent does local linear, in

practice, perform better (or worse) than other orders? and 3) What data-based procedure or diagnostic could

help guide the order choice?

This paper addresses these questions. First, we revisit the theoretical arguments used to justify a partic-

ular polynomial order. The seminal work of Hahn, Todd and Van der Klaauw (2001) correctly states that the

local linear estimator has an asymptotically smaller bias than the kernel regression estimator. But as Porter

(2003) points out, by the same argument, any higher-order polynomial will have an even smaller asymptotic

bias than the local linear. Using the asymptotic approximation for mean-squared-error used in bandwidth

calculations, we show that the linear specification may perform better or worse than alternative polynomials,

depending on the sample size. Therefore, the theoretical frameworks used in the past do not uniformly point

to the preference of any specific polynomial order, and if anything, remind us that the polynomial order is

as much of a choice as the bandwidth.

Second, because existing methods are primarily based on asymptotic approximations, we explore the

finite sample performance of local linear estimators against alternative orders of polynomials – in each

case using various notions of optimal bandwidths – through Monte Carlo simulations based on two well-

known examples (Lee, 2008 and Ludwig and Miller, 2007). In fact, we use the exact same data generating

processes (DGP’s) employed in the simulations of Imbens and Kalyanaraman (2012) and Calonico, Cattaneo

and Titiunik (2014b). We find that in most of our simulations, higher-order alternatives outperform p = 1 for

the two specific DGP’s we consider. In particular, they tend to outperform local linear in terms of their mean-

squared-error (henceforth MSE), coverage rate of the 95% confidence interval (CI), and the size-adjusted CI

length, especially when the sample size is large.

Finally, while we consider it advisable to explore the sensitivity of results to different polynomial or-

ders, we additionally propose a polynomial order selection procedure for RD designs that is in the spirit of a

suggestion by Fan and Gijbels (1996), and is a natural extension of the approach based on asymptotic MSE

(henceforth AMSE) used in recent developments on bandwidth choices (e.g., Imbens and Kalyanaraman,

2012 and Calonico, Cattaneo and Titiunik, 2014b). In our Monte Carlo simulations, we find that the esti-

3Hall and Racine (2015) study nonparametric estimation at an interior point and propose a leave-one-out cross-validation proce-
dure. Polynomial order choice is also discussed in the literature of sieve methods, but as reviewed by Chen (2007), only the rate at
which polynomial order increases with sample size is specified, which does not readily translate into advice for applied researchers.
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mator chosen by the proposed order selector improves upon local linear in terms of MSE, CI coverage rate,

and CI length. The improvements are substantial when the sample size is large.

The remainder of the paper is organized as follows. Section 2 revisits the theoretical considerations

behind the use of local polynomial estimators for RD. Section 3 presents simulation results. In section 4, we

show that the AMSE-based methods for choosing the polynomial order can be easily extended to the fuzzy

RD design and the regression kink design (RKD). Section 5 concludes.

2 Local Polynomial Order in RD Designs: Theoretical Considerations

Here, we review and re-examine the theoretical justification for the choices in nonparametric RD estimation.

In a sharp RD design, the binary treatment D is a discontinuous function of the running variable X : D =

1[X>0] where we normalize the policy cutoff to 0. Hahn, Todd and Van der Klaauw (2001) and Lee (2008)

show that under smoothness assumptions, the estimand

lim
x→0+

E[Y |X = x]− lim
x→0−

E[Y |X = x] (1)

identifies the treatment effect τ ≡ E[Y1−Y0|X = 0], where Y1 and Y0 are the potential outcomes. To estimate

(1), researchers typically use a polynomial regression framework to separately estimate limx→0+ E[Y |X = x]

and limx→0− E[Y |X = x]. Specifically, they solve the minimization problem using only observations above

the cutoff as denoted by the + superscript:

min
{β̃+

j }

n+

∑
i=1
{Y+

i − β̃
+
0 − β̃

+
1 X+

i − ...− β̃
+
p (X+

i )p}2K(
X+

i
h

), (2)

and the resulting β̂
+
0 is the estimator for limx→0+ E[Y |X = x]. The estimator β̂

−
0 for limx→0− E[Y |X = x]

is defined analogously, and the RD treatment effect estimator is τ̂p ≡ β̂
+
0 − β̂

−
0 , where we emphasize its

dependence on p.

Any nonparametric RD estimator is generally biased in finite samples. Expressions for the exact bias

require knowledge of the true underlying conditional expectation functions; thus, the econometric literature

has focused on first-order asymptotic approximations for the bias and variance. Lemma 1 of Calonico,

Cattaneo and Titiunik (2014b) proves the AMSE of the p-th order local polynomial estimator τ̂p as a function
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of bandwidth as

AMSEτ̂p(h) = h2p+2B2
p +

1
nh

Vp (3)

under standard regularity conditions, where Bp and Vp are unknown constants. The first term is the approx-

imate squared bias, and the second term the approximate variance. Bp depends on the (p+1)-th derivatives

of the conditional expectation function E[Y |X = x] on two sides of the cutoff, and Vp on the conditional

variance Var(Y |X = x) on two sides of the cutoff as well as the density of X at the cutoff.

First-order approximations like the one above have been used in the literature in two ways. First, Hahn,

Todd and Van der Klaauw (2001) argue in favor of the local linear RD estimator (p = 1) over the kernel

regression estimator (p = 0) for its smaller order of asymptotic bias – the biases of the two estimators

are h2B1 and hB0 and are of orders O(h2) and O(h) respectively. However, by the very same logic, the

asymptotic bias is of order O(h3) for the local quadratic estimator (p = 2), O(h4) for local cubic (p = 3),

and O(hp+1) for the p-th order estimator, τ̂p, under standard regularity conditions. Therefore, if researchers

were exclusively focused on the maximal shrinkage rate of the asymptotic bias, this argues for choosing p to

be as large as possible. Hahn, Todd and Van der Klaauw (2001) recommends p = 1, implicitly recognizing

that factors beyond the bias shrinkage rate should also be taken into consideration.

Second, expression (3) is used as a criterion to determine the optimal bandwidth for a chosen order

p. Since the AMSE is a convex function of h, one can solve for the h that leads to the smallest value of

AMSE, considering as optimal the bandwidth defined by hopt (p)≡ argmin
h

AMSEτ̂p (h). Imbens and Kalya-

naraman (2012) do precisely this to propose a bandwidth selector for local linear estimation (henceforth IK

bandwidth) and Calonico, Cattaneo and Titiunik (2014b) further extend the selector to higher-order polyno-

mial estimators (henceforth CCT bandwidth). It follows from Lemma 1 of Calonico, Cattaneo and Titiunik

(2014b) that hopt (p) for τ̂p is of order O(n−
1

2p+3 ).

Here we point out the natural implication of this. By evaluating expression (3) at hopt , AMSEτ̂p (hopt (p))

is equal to Cp · n−
2p+2
2p+3 , where Cp is a function of the constants Bp and Vp. Therefore, as the sample size

n increases, AMSEτ̂p (hopt (p)) shrinks faster for a larger p and will eventually, for the same n, fall below

that of a lower-order polynomial. Intuitively, if E[Y |X = x] is close to being linear on both sides of the

cutoff, then the local linear specification will provide an adequate approximation, and consequently τ̂1 will

have a smaller AMSE than that of τ̂2 for a large range of sample sizes. On the other hand, if the curvature

of E[Y |X = x] is large near the cutoff, a higher p will have a lower AMSE, even for small sample sizes.
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Although we expect higher-order polynomials to have lower AMSE in sufficiently large samples, the precise

sample size threshold at which that happens depends on the DGP’s through the constant Cp.

This point is concretely illustrated in Figure 1, using the two DGP’s we rely on for subsequent simu-

lations, which are taken from Lee (2008) and Ludwig and Miller (2007) and described in greater detail in

Appendix section C. Since we know the parameters of the underlying DGP’s, we can analytically compute

the quantities on the right hand side of equation (3). Using Lemma 1 of Calonico, Cattaneo and Titiunik

(2014b), we plot AMSEτ̂p as a function of sample size n for p = 1,2, which are shown in Panels (A) and (B)

of Figure 1 for the two DGP’s respectively (see Appendix section B.1 for details).

In Panel (A), we see that at small sample sizes, AMSEτ̂1 is marginally below AMSEτ̂2 , but is larger at

sample sizes over n = 1167. Therefore, for the actual number of observations in the analysis sample of Lee

(2008), nactual = 6558, local quadratic should be preferred to local linear based on the AMSE comparison;

the associated reduction in AMSE is 9%. In Panel (B), the difference between p= 1 and p= 2 is much larger,

and AMSEτ̂2 dominates AMSEτ̂1 for all n under 7000. At the actual number of observations in Ludwig and

Miller (2007), nactual = 3105, the local quadratic estimator reduces the AMSE by a considerable 38%.4 It

is worth noting that at nactual , the AMSE closely matches the MSE from our simulations in section 3 below,

which are marked by the cross for the local linear estimator and circle for local quadratic.

In practice, equation (3) cannot be directly applied because it depends on unknown derivatives of the

conditional expectation function, unknown conditional variances, and the density of X . Thus, Imbens and

Kalyanaraman (2012) and Calonico, Cattaneo and Titiunik (2014b) use the empirical analog of (3):

ÂMSEτ̂p (h) = h2p+2B̂2
p +

1
nh

V̂p (4)

where the quantities Bp and Vp in (3) are replaced by estimators B̂p and V̂p, and the optimal feasible band-

width is defined as ĥ(p) ≡ argmin
h

ÂMSEτ̂p (h). The two studies differ in how they arrive at the estimates

of B1 and V1; Calonico, Cattaneo and Titiunik (2014b) also generalizes Imbens and Kalyanaraman (2012)

by proposing bandwidth selectors for τ̂p for any given p. Both bandwidth selectors include a regulariza-

tion term, which reflects the variance in bias estimation and prevents the selection of large bandwidths.

Even though the regularization term is asymptotically negligible, it often plays an important role empiri-

cally (see discussions in Card et al., 2015a and Card et al., 2017). In our Monte Carlo simulations below,

4The same exercise can be performed for other values of p. See Tables 3-4, A.3-A.4 in Card et al. (2014) for more threshold
sample sizes.
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we experiment with the CCT bandwidth both with and without regularization. We additionally examine the

performance of the bias-corrected estimator of Calonico, Cattaneo and Titiunik (2014b), denoted by τ̂bc
p .5

Here, we extend the logic that justifies the optimal bandwidth by noting that we can further minimize

the estimated AMSE by searching over different values of p. That is, we can define

p̂≡ argmin
p

ÂMSEτ̂p

(
ĥ(p)

)
.

No new quantities need be computed beyond the estimators B̂p and V̂p and the optimal ĥ(p), which must

be calculated when implementing, for example, the CCT bandwidth.

In summary, our observation is that if one has already chosen an estimator (and the corresponding

AMSE-minimizing bandwidth selector such as CCT), then it is straightforward to also report the resulting

ÂMSEτ̂p for any given p. The recommendation here is to try different values of p and choose the p with

the lowest ÂMSEτ̂p . The exact expressions needed from Calonico, Cattaneo and Titiunik (2014b) for im-

plementation and the description of a Stata command rdmse to perform the calculations are provided in

Appendix section B.2. Although this simple order selection approach was suggested by Fan and Gijbels

(1996) for general local polynomial regression, to the best of our knowledge, it has not yet been applied to

RD designs, and its performance as an order selector for RD has not been assessed.6 We report on the finite

sample performance of this polynomial order selector below.

3 Monte Carlo Results

Although AMSE provides the theoretical basis for bandwidth selection and our complementary proposal

for polynomial order selection, it is nevertheless a first-order asymptotic approximation of the true MSE.

Therefore, we conduct Monte Carlo simulations to examine the finite sample performance of local poly-

nomial estimators of various orders – which themselves utilize the CCT bandwidth selectors. We focus

on how the de facto standard in the literature of local linear compares to alternative orders, as well as the

performance of the order selection procedure proposed above.

5This estimator is constructed by first estimating the asymptotic bias of the local RD estimator τ̂p with a local regression of
order p+ 1, then subtracting it from τ̂p. Additionally, Calonico, Cattaneo and Titiunik (2014b) propose to calculate the robust
confidence interval by centering it at τ̂bc

p and accounting for the variance in estimating the bias.
6The procedure in Fan and Gijbels (1996) chooses the polynomial order that minimizes the estimated AMSE among alternative

local polynomial estimators of the conditional expectation function evaluated at an interior point. Our adaptation of this procedure
mirrors how Imbens and Kalyanaraman (2012) modify standard nonparametric bandwidth selection for RD designs.
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We utilize DGP’s from two well-known empirical examples, Lee (2008) and Ludwig and Miller (2007),

and the specifications of these DGP’s follow exactly those in Imbens and Kalyanaraman (2012) and Calonico,

Cattaneo and Titiunik (2014b); see Appendix section A.1 for details. Our simulations draw 10000 repeated

samples from the two DGP’s. Below, we present results using a uniform kernel; results from the triangular

kernel are available in our previous working paper Card et al. (2014), and the qualitative conclusions are the

same.7

The simulation results are organized as follows. Tables 1 and 2 report on the performances of con-

ventional RD estimators (τ̂p) applied to the two DGP’s respectively, while Tables 3 and 4 report on the

bias-corrected RD estimators (τ̂bc
p ) and the associated robust confidence intervals as per Calonico, Cattaneo

and Titiunik (2014b). Each of the four tables displays results corresponding to two sample sizes: the actual

sample size in Panel A and large sample size in Panel B. The actual sample size is that of the analysis sample

in the two empirical studies: nactual = 6558 for Lee (2008) and nactual = 3105 for Ludwig and Miller (2007).

We set the large sample size to nlarge = 60000 for the Lee DGP and nlarge = 30000 for Ludwig-Miller. nlarge

is about 10×nactual in both studies, and it is comparable or lower than the number of observations in many

recent empirical papers.8

In part (a) of each panel, we show the summary statistics for the local linear estimator with three band-

width choices: i) the (infeasible) theoretical optimal bandwidth (hopt), which minimizes AMSE using knowl-

edge of the underlying DGP, ii) the default CCT bandwidth selector from Calonico, Cattaneo and Titiunik

(2014b) (ĥCCT ), and iii) the CCT bandwidth selector without the regularization term (ĥCCT,noreg). We report

averages and percentages across the simulations: the average bandwidth in column (2), average number

of observations within the bandwidth in column (3), MSE in column (4), coverage rate of the 95% CI in

column (5), the average CI length in columns (6), and the average size-adjusted CI length in columns (7).9

In part (b) of each panel, we present the same statistics for different polynomial orders; in columns (4)-(7),

7Cheng, Fan and Marron (1997) have shown that the triangular kernel K(u) = (1−u) ·1u∈[−1,1] is boundary optimal (and hence
optimal for RD designs). In practice, the uniform kernel K(u) = 1

2 ·1u∈[−1,1] is popular among practitioners for its convenience and
for the ease of reconciling estimates with graphical evidence.

8We keep fixed the distributions of X and ε as well as E[Y |X = x], while we vary the sample size. The simulation exercise does
not speak to the situation where the researcher collects additional years of data in which the support of X changes.

9While the other statistics are standard in Monte Carlo exercises, the size-adjusted CI length warrants further explanation. Size-
adjustment is necessary because not all 95% CI’s achieve the nominal coverage rate, in which case no standard metric tells us how
to trade off a lower coverage rate for a shorter confidence interval. Therefore, we adapt the size-adjusted power proposal from
Zhang and Boos (1994) to calculate size-adjusted 95% CI’s. Specifically, instead of using 1.96 as the critical value for constructing
the 95% CI, we find the smallest critical value so that the resulting size-adjusted 95% CI has the nominal coverage rate in the
simulation. We simply report the average length of these size-adjusted CI’s in column (7).
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we express the quantities as a ratio to the quantity in the local linear specification.10

3.1 Local Linear versus Alternative Polynomials

We now highlight the following findings from Tables 1 to 4. First, the local linear estimator never delivers

the lowest MSE in any of the tables. Looking down column (4) in part (b) of every panel, there is at least one

alternative estimator for which the MSE ratio is less than one. The reduction in MSE from using a different

polynomial order ranges from 5.5% (local quadratic with ĥCCT in Panel A of Table 3) to 73% (local quartic

with hopt in Panel B of Table 2).

Second, from column (5) in all tables, the cubic and quartic estimators always improve upon the local

linear in terms of its 95% CI coverage rate. In many instances, the coverage rate of the local linear CI is close

to the nominal level, in which case the improvement by cubic and quartic is small. But the improvement

can be substantial in other cases. Given the analysis of Calonico, Cattaneo and Titiunik (2014b), it is not

surprising that the conventional local linear CI sometimes undercover. The undercoverage is more serious

under the Lee DGP: The local linear CI coverage rate is as low as 66% in simulations with nactual and when

the larger ĥCCT,noreg is used (Panel A(a) of Table 1). But this undercoverage is alleviated with the use of any

alternative order, and the local quartic estimator has the highest coverage rate of 1.389×66.0% = 91.7%.

The robust local linear CI has coverage rates closer to the nominal level, although it once again significantly

undercovers in simulations with the Lee DGP, nactual , and ĥCCT,noreg – the coverage rate is 84.6% as shown

in Panel A(a) of Table 3. By comparison, the local cubic and quartic robust CI’s cover the true treatment

effect parameter between 94% and 95% of the time.

Third, since all else equal, researchers prefer tighter confidence intervals, we compare the length of

confidence intervals across different choices of p. Table 4 shows that the coverage rates are close to the

nominal 95% for all robust confidence intervals, and almost all of the polynomial orders greater than one

yield confidence intervals that are smaller, and substantially so (above 35 percent) in some cases. In Tables

1 to 3, the coverage rates of both local linear and higher-order polynomials are noticeably below the nominal

95% rate. Thus, we rely on size-adjusted confidence intervals in column (7) to compare the precision of the

estimates on equal footing. Of the 54 specifications that use higher-order polynomials in those tables, only

10Since the k-th order derivative of the conditional expectation function is zero at the cutoff for k > 5, the highest-order estimator
we allow is local quartic to ensure the finiteness of the theoretical optimal bandwidth. For the Lee DGP, the alternative polynomial
orders are p = 0,2,3,4, as well as the order p̂ selected from the set {0,1,2,3,4} that minimizes estimated AMSE. For Ludwig-
Miller, we exclude p = 0 from the simulations under the actual sample size, because hopt for p = 0 is so small (0.004) that the
average effective sample size is only 17.
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two of them have longer size-adjusted confidence intervals than local linear.

Our final observation about the performance of higher-order polynomials is that the optimal bandwidths

for each of those orders suggest that the intuition that RD designs should only use observations “close” to the

discontinuity threshold can be misleading. The intuition is reasonable for the hypothetical infinite sample,

but in practice, with a finite sample, the optimal (in the AMSE sense) bandwidth may be relatively large.

For example, in both Panels A and B of Table 1, the order with the lowest MSE is p = 4. With p = 4, the

(theoretically) optimal bandwidth implies using an average of 5227 of the 6558 observations under nactual ,

or 39983 of the 60000 observations under nlarge. The same pattern consistently holds true for the remaining

tables: the better performing estimators use higher-order polynomials, which in turn imply larger optimal

bandwidths, and therefore use a substantial fraction of the sample.

So an important lesson is that while nonparametric estimation and inference imagines only using data

in a “close neighborhood” of the threshold asymptotically, optimal bandwidth procedures may yield wide

bandwidths that amount to using a substantial fraction of the data in practice, particularly for a higher-

order local polynomial estimator. There is a numerical equivalence here: the high-order local polynomial

estimator (with uniform kernel) is numerically identical to trimming the tails of X and running “global

polynomials” on the trimmed data. One can thus think of the bandwidth selector as providing a theoretical

justification and guidance for the degree of trimming. Equivalently, a global polynomial that uses the entire

range of X yields estimates that are numerically equivalent to a local high-order polynomial that uses a

bandwidth covering the entire range of X .

Since our Monte Carlo results suggest that higher-order polynomials with somewhat wide bandwidths

perform the best – and are numerically equivalent to some trimming of the distribution of X – we consider

our findings in light of the recent study by Gelman and Imbens (forthcoming), who raise concerns about

using high-order global polynomials to estimate the RD treatment effect. One concern in particular is that

global polynomial estimators may assign too much weight (henceforth GI weights) to observations far away

from the RD cutoff.

This does not appear to be the case for the applications we study. Using the actual Lee and Ludwig-

Miller data, Appendix Figures A.3-A.4 plot the GI weights for the left and right intercept estimators that

make up τ̂p for p between zero and five. For brevity, we only display the weights under the uniform kernel

with bandwidth ĥCCT , and we see similar patterns in both figures. As desired, observations far away from

the cutoff receive little weight under high-order polynomials compared to those close to the cutoff. Our
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previous version, Card et al. (2014), displays results with alternative kernel and bandwidth choices, and the

patterns are similar.11

3.2 Performance of the Polynomial Order Selector

We have thus far provided both theoretical arguments and Monte Carlo evidence that point toward a broader

view regarding the choice of p. We have presented simulation results on the performance of estimators that

take p as given and use existing methods for choosing the ÂMSE-minimizing h, conditional on that p.

We now turn to the performance of the proposed order selector – choosing the ÂMSE-minimizing p.

Specifically, for each Monte Carlo draw, we compute the RD estimator for multiple values of p and their

corresponding ÂMSE . For that same draw, we choose the p with the lowest ÂMSE . By repeating this

process over the Monte Carlo draws, we can examine how well this procedure performs in terms of MSE,

coverage, and the length of the confidence interval.

The results are found in the rows labeled “p̂” below the quartic in Tables 1 to 4. Overall, they show

that using the order p̂ leads to comparable, or in many cases, considerably lower MSE than always choosing

p = 1. For the Lee DGP with nactual , we see from Panel A of Tables 1 and 3 that the ratio of MSEp̂,hopt

over MSE1,hopt is 0.762 for the conventional estimator and 0.786 for the bias-corrected estimator. Out of the

12 permutations (3 bandwidth selectors times 2 estimators times 2 sample sizes), in three cases the MSE is

slightly larger for the order selector p̂ than that for local linear. In all other cases, the MSE from using p̂

is lower, and in most cases significantly lower. The order selector p̂ performs better with the larger sample

sizes (Panel B of each table). For the Ludwig-Miller DGP, p̂-selected estimator outperforms local linear in

all simulations by selecting higher polynomial orders as shown in Tables 2 and 4. The reduction in MSE

ranges from 33% to 73%.

We see qualitatively similar results for the p̂-selected estimator in terms of its CI coverage rate vis-à-

vis local linear. The p̂-selected estimator has comparable or better coverage rates under the Lugwig-Miller

DGP. Its performance under the Lee DGP once again depends on the sample size: It tends to have somewhat

lower coverage rates than local linear when the sample size is nactual , but the coverage rates are closer to the

nominal level when the sample size is nlarge. Overall, the improvement or reduction on the CI coverage rate

tends to be moderate – less than 6% for the conventional CI and less than 2% for the CCT robust CI.
11We present additional simulation results using procedures from Armstrong and Kolesár (forthcoming) and Imbens and Wager

(forthcoming). See Appendix section C for details.
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The tables also show, in the three out of four scenarios where the p̂-selected estimator enjoys a (weak)

size advantage – 1) Lee DGP with nlarge, 2) Ludwig-Miller DGP with nactual , and 3) Ludwig-Miller DGP

with nlarge – the CI length is shorter and considerably so in many cases. The reduction in the CI length

ranges from 5% to 25% in scenario 1), to between 18% and 35% in scenario 2), to above 30% in scenario

3). In short, the p̂-selected estimator appears to have both a size advantage and a power advantage in these

three scenarios.

We show additional results in Appendix Tables A.3 and A.4 for the sample size nsmall = 500. This is the

sample size used in the simulations of Imbens and Kalyanaraman (2012), Calonico, Cattaneo and Titiunik

(2014b), and Armstrong and Kolesár (forthcoming). We see from Panel A of Table A.3 that τ̂1 has the lowest

MSE under the Lee DGP, and that using p̂ leads to at least a 15% increase in MSE and lower CI coverage

rates for all three bandwidth choices. As shown in Panel A of Table A.4, p̂ does better for the bias-corrected

estimator under the Lee DGP, leading to comparable or lower MSE’s, although the CI coverage rates are still

lower than p = 1. This underwhelming performance of p̂ in small sample size is an important caveat, but

we note that it is rare to find RD studies that rely on 500 or fewer observations. In our survey of 110 studies,

only three papers use fewer than 500 observations, a third of the papers use fewer than 6000 observations,

and the median sample size is 21561. A sample size of 60000, which is the largest sample size used in our

simulations, sits at the 63rd percentile. Therefore, it is fairly common to see studies with sample size at or

larger than 60000, much more so than those with just 500 observations. But even with 500 observations, p̂

unambiguously outperforms local linear under the Ludwig-Miller DGP. As shown in Panel B of Tables A.3

and A.4, using p̂ improves upon its local linear counterpart across all three performance measures: MSE, CI

coverage rate, and CI length.

In summary, we implemented simulations under two DGP’s (Lee and Ludwig-Miller), three bandwidth

choices (hopt , hCCT , and hCCT,noreg), two types of estimators (conventional and bias-corrected), and three

sample sizes (nsmall , nactual , and nlarge). We find that local linear is dominated by other polynomial order

choices in most cases. In these simulation exercises, using p̂ as the polynomial order tends to improve upon

always choosing local linear, especially when the sample size is large.

11



4 Extensions: Fuzzy RD and RKD

In this section, we briefly discuss how (A)MSE-based local polynomial order choice applies to two popular

extensions of the sharp RD design. The first extension is the fuzzy RD design, where the treatment assign-

ment rule is not strictly followed. In the existing RD literature, p = 1 is still the default choice in the fuzzy

RD. But by a similar argument as above, local linear is not necessarily the best estimator in all applications.

In the same way that we can estimate the AMSE of a sharp RD estimator, we can rely on Lemma 2 and

Theorem A.2 of Calonico, Cattaneo and Titiunik (2014b) to estimate the AMSE of a fuzzy RD estimator.

The same principle can be applied to the regression kink design proposed and explored by Nielsen,

Sørensen and Taber (2010) and Card et al. (2015a).12 For RKD, Calonico, Cattaneo and Titiunik (2014b)

and Gelman and Imbens (forthcoming) recommend using p = 2 by extending the Hahn, Todd and Van der

Klaauw (2001) argument, but as we similarly discussed for the case for RD, the AMSE for p = 2 (while

using the corresponding AMSE-minimizing h) may or may not be lower, depending on the sample size in

any particular empirical application.

To illustrate this once again, but in the case of RKD, we use the bottom-kink and top-kink samples of

the application in Card et al. (2015b) to approximate the actual first-stage and reduced-form conditional

expectation functions with global quintic specifications on each side of the cutoff (see Appendix section

A.2 for details). The specification of these approximating DGP’s again allows us to compute AMSEτ̂p

as a function of the sample size for different polynomial orders. As shown in Panel (C) of Figure 1, the

AMSE of the local quadratic fuzzy estimator is asymptotically smaller. However, it takes about 88 million

observations for the local quadratic to dominate local linear. In Panel (D) of Figure 1, the local linear fuzzy

estimator dominates its local quadratic counterpart for sample sizes up to 200 million observations; in fact,

the threshold sample size that tips in favor of the local quadratic estimator is 61 trillion. Even though we

had the universe of the Austrian unemployed workers over a span of 12 years, the number of observations

is about 270000 for both the top- and bottom-kink samples. In this case, these calculations give reason to

prefer the local linear fuzzy estimator.13

12Our software rdmse implements the AMSE estimation for all conventional/bias-corrected sharp/fuzzy RD/RK estimators.
13We make this same point in Card et al. (2017) through estimated AMSE’s and Monte Carlo simulation results that compare

alternative estimators.
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5 Conclusion

The local linear estimator has become the standard specification in the regression discontinuity literature. In

this paper, we re-examine the reasoning in favor of p = 1 and show that 1) the theoretical arguments that

suggest the dominance of p = 1 over p = 0 also suggest the dominance of any p > 1 over p = 1, and 2) the

dominance is dependent on the shape of the underlying data generating processes and sample sizes.

We concretely illustrate these points with simulations based on two well-known RD examples. In these

exercises, p = 1 tends to be dominated by alternative polynomial specifications across bandwidth selectors,

estimators (conventional and bias-corrected), and across sample-sizes. Our proposed order selector, which is

simply a logical and complementary extension of the theoretical justification behind widely-used bandwidth

selectors, performs reasonably well. It does particularly well in large sample sizes, comparable to the sample

sizes we see employed in empirical applications today.

13
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Figure 1: Asymptotic Mean-Squared-Error as a Function of Sample Size
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Note: In Panels (A) and (B), we superimpose the simulated MSE’s of the local linear (cross) and quadratic

(circle) estimators with the theoretical optimal bandwidth. These MSE’s are taken from Tables 1 and 2.

At the actual sample size of the two studies, the theoretical AMSE’s appear to be quite close to the

corresponding MSE’s.
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Appendix

A Specifications of Data Generating Processes

A.1 Lee and Ludwig-Miller DGP’s

To obtain the conditional expectation functions in the Lee and Ludwig-Miller DGP’s, Imbens and Kalya-

naraman (2012) and Calonico, Cattaneo and Titiunik (2014b) first discard the outliers in the empirical data

(i.e. observations for which the absolute value of the running variable is very large) and then fit a sepa-

rate quintic function on each side of the cutoff to the remaining observations. The conditional expectation

functions are

Lee: E[Y |X = x] =


0.48+1.27x+7.18x2 +20.21x3 +21.54x4 +7.33x5 if x < 0

0.52+0.84x−3.00x2 +7.99x3−9.01x4 +3.56x5 if x > 0
(A1)

Ludwig-Miller: E[Y |X = x] =


3.71+2.30x+3.28x2 +1.45x3 +0.23x4 +0.03x5 if x < 0

0.26+18.49x−54.81x2 +74.30x3−45.02x4 +9.83x5 if x > 0.
(A2)

Equations (A1) and (A2) are graphed in Appendix Figure A.1. As seen in the formulations above and

as presented graphically, the Ludwig-Miller DGP has very large slope and curvature above the cutoff as

compared to the Lee DGP.

The assignment variable X is specified as following the distribution 2B(2,4)− 1, where B(α,β ) de-

notes a beta distribution with shape parameters α and β . The outcome variable is given by Y = E[Y |X =

x]+ ε , where ε ∼ N(0,σ2
ε ) with σε = 0.1295.

A.2 Card-Lee-Pei-Weber DGP’s

The process of specifying the Card-Lee-Pei-Weber DGP’s are described in section 4.4.3 of Card et al. (2017).

Below we state the parameters in the bottom- and top-kink DGP’s respectively.

1



A.2.1 Bottom-kink DGP

The first-stage and reduced-form conditional expectation functions for the bottom-kink DGP are specified

as

First-stage: E[B|X = x] =


β0 +β

+
1 x+β

+
2 x2 +β

+
3 x3 +β

+
4 x4 +β

+
5 x5 if x < 0

β0 +β
−
1 x+β

−
2 x2 +β

−
3 x3 +β

−
4 x4 +β

−
5 x5 if x > 0

(A3)

Reduced-form: E[Y |X = x] =


γ0 + γ

+
1 x+ γ

+
2 x2 + γ

+
3 x3 + γ

+
4 x4 + γ

+
5 x5 if x < 0

γ0 + γ
−
1 x+ γ

−
2 x2 + γ

−
3 x3 + γ

−
4 x4 + γ

−
5 x5 if x > 0

(A4)

where

• β0 = 3.17

• β
+
1 = 3.14×10−5; β

−
1 = 8.40×10−6

• β
+
2 = 5.30×10−9; β

−
2 =−1.21×10−8

• β
+
3 =−3.82×10−12; β

−
3 =−1.01×10−11

• β
+
4 = 9.54×10−16; β

−
4 =−7.56×10−16

• β
+
5 =−8.00×10−20; β

−
5 = 7.89×10−19

• γ0 = 4.51

• γ
+
1 =−1.76×10−5 ; γ

−
1 =−4.75×10−5

• γ
+
2 = 7.00×10−9 ; γ

−
2 = 1.64×10−7

• γ
+
3 =−5.00×10−12 ; γ

−
3 = 3.04×10−10

• γ
+
4 = 1.00×10−15 ; γ

−
4 = 1.82×10−13

• γ
+
5 =−2.00×10−19 ; γ

−
5 = 3.53×10−17

• The conditional variances of B given X just above and below the cutoff are 2.05× 10−4 and 2.07×

10−4, respectively.

• The conditional variances of Y given X just above and below the cutoff are 1.51 and 1.49, respectively.
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• The density fX evaluated at 0 is: 1.53×10−4.

A.2.2 Top-kink DGP

The first-stage and reduced-form conditional expectation functions for the top-kink DGP are specified as

quintic functions on both sides of the cutoff as in equations (A3) and (A4). The coefficients are:

• β0 = 3.65

• β
+
1 =−3.70×10−6; β

−
1 = 1.03×10−5

• β
+
2 = 1.25×10−8; β

−
2 =−3.18×10−9

• β
+
3 =−6.17×10−12; β

−
3 =−5.72×10−13

• β
+
4 = 1.16×10−15; β

−
4 =−4.83×10−17

• β
+
5 =−7.43×10−20; β

−
5 =−1.42×10−21

• γ0 = 4.65

• γ
+
1 =−1.29×10−5; γ

−
1 = 1.51×10−5

• γ
+
2 = 2.35×10−8; γ

−
2 =−5.69×10−9

• γ
+
3 =−1.42×10−11; γ

−
3 =−1.07×10−12

• γ
+
4 = 3.04×10−15; γ

−
4 =−8.49×10−17

• γ
+
5 =−2.06×10−19; γ

−
5 =−2.65×10−21

• The conditional variances of B given X just above and below the cutoff are 1.20× 10−3 and 9.60×

10−4, respectively.

• The conditional variances of Y given X just above and below the cutoff are 1.62 and 1.63, respectively.

• The density fX evaluated at 0 is: 2.35×10−5.
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B AMSE Calculation and Estimation

B.1 Theoretical AMSE Calculation

After the full specification of a data generating process, we can calculate AMSEτ̂p(h) by applying Lemma 1

of Calonico, Cattaneo and Titiunik (2014b) in a sharp design and Lemma 2 in a fuzzy design. The lemmas

provide the expressions for the constants in the squared-bias and variance terms, B2
p and Vp, that make up

AMSEτ̂p(h) according to equation (3).1 Specifically, B2
p depends on the (p+1)-th derivatives on both sides

of the cutoff, and Vp depends on the conditional variances on both sides of the cutoff as well as the density

of the running variable at the cutoff. With B2
p and Vp computed, we can calculate the infeasible optimal

bandwidth hopt for a given sample size, which is simply a function of B2
p and Vp. Finally, plugging hopt back

into AMSEτ̂p(h) yields the AMSE for that given sample size, and Figure 1 is the graphical representation of

this mapping across different sample sizes.2

B.2 AMSE Estimation

To estimate AMSEτ̂p , we rely on the proposed procedure in Calonico, Cattaneo and Titiunik (2014a) and

Calonico, Cattaneo and Titiunik (2014b) . Our program rdmse_cct2014 takes user-specified bandwidths

as inputs and estimates B̂2
p and V̂p for the conventional estimator in the same way as Calonico, Cattaneo

and Titiunik (2014b).3 Again, the correspondences between B̂p and V̂p in this paper and their notations in

Calonico, Cattaneo and Titiunik (2014b) are laid out in Table A.5. We also provide another program rdmse,

which speeds up the computation in rdmse_cct2014 by modifying variance estimations. As with Calonico,

Cattaneo and Titiunik (2014a), rdmse implements a nearest-neighbor estimator as per Abadie and Imbens

(2006) and sets the number of neighbors to three. However, in the event of a tie, while Calonico, Cattaneo

and Titiunik (2014a) selects all of the closest neighbors, we randomly select three neighbors. We adopt the

same modification in Card et al. (2015a).

Additionally, rdmse estimates the AMSE of the bias-corrected RD or RK estimator τ̂bc
p :

ÂMSE τ̂bc
p
(h,b) =

(
B̃bc

p (h,b)
)2

+Ṽ bc
p (h,b),

1In Table A.5, we summarize the correspondence between the expressions in this paper to those in Calonico, Cattaneo and
Titiunik (2014b).

2The program used to generate Figure 1 is available at https://sites.google.com/site/peizhuan/programs/.
3The installation instruction is available at https://sites.google.com/site/peizhuan/programs/.
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where b is the pilot bandwidth used in Calonico, Cattaneo and Titiunik (2014b) to estimate the bias of

τ̂p. According to Theorems A.1 and A.2 of Calonico, Cattaneo and Titiunik (2014b), the bias of τ̂bc
p has

two terms: the first term is the higher-order approximation error post bias-correction, and the second term

captures the bias in estimating the bias of τ̂p. These two terms involve the (p+ 2)-th derivatives of the

conditional expectation function on both sides of the cutoff, which are actually estimated via local polyno-

mial regressions in the CCT bandwidth selection procedure for the sharp design, and in the “fuzzy CCT”

bandwidth selection procedure of Card et al. (2015a). We follow the same algorithm to arrive at B̃bc
p . Ṽ bc

p

is simply the estimated variance of τ̂bc
p , and its computation is covered in detail in Calonico, Cattaneo and

Titiunik (2014b).

Finally, we point out that our AMSE estimator is consistent for the true MSE. In the case of the conven-

tional estimator, this means that
ÂMSEτ̂p(h)
MSEτ̂p(h)

p→ 1 (A5)

under the regularity conditions in Calonico, Cattaneo and Titiunik (2014b). The consistency result of (A5) is

established by noting: 1) B̂p and V̂p are consistent estimators of Bp and Vp so that ÂMSEτ̂p(h)/AMSEτ̂p(h)
p→

1, and 2) AMSEτ̂p(h)/MSEτ̂p(h)→ 1 as h→ 0, following Lemmas 1 and 2 of Calonico, Cattaneo and Titiu-

nik (2014b) for the sharp and fuzzy cases respectively. The consistency of ÂMSE τ̂bc
p
(h,b) can be similarly

established.

C Simulation Results from Armstrong and Kolesár (forthcoming) and Im-

bens and Wager (forthcoming)

For comparison purposes, we additionally present simulation results using alternative procedures for esti-

mation and inference as proposed by Armstrong and Kolesár (forthcoming) (henceforth AK) and Imbens

and Wager (forthcoming) (henceforth IW). We apply the procedures to the Lee and Ludwig-Miller DGP’s

under three sample sizes: nactual and nlarge as in Tables 1-4, as well as nsmall = 500, the sample size used in

the simulations of Imbens and Kalyanaraman (2012), Calonico, Cattaneo and Titiunik (2014b), and Arm-

strong and Kolesár (forthcoming). Each method is implemented using the authors’ R packages.4 For these

4To improve the numerical stability in applying the IW package optrdd, we trim the data generated from the Ludwig-Miller
DGP by restricting observations to the range of |x| < 0.1 (leaving about 13% of the observations), outside which the data points
would have been assigned small weights in constructing the estimator anyway. In addition, we use the mosek optimizer option
when calling optrdd. We thank Stefan Wager for these suggestions.
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procedures, it is necessary to specify a bound on the magnitude of the second derivative of the conditional

expectation function. For the purposes of these simulations, we simply use the true maximum of the second

derivative magnitude from the DGP’s (A1) and (A2), while keeping in mind that in practice this quantity

is unknown, and IW and AK suggest examining the results for a range of different values for this bound.5

We tabulate the coverage rates and the average lengths of the resulting 95% confidence intervals over 1000

repeated Monte Carlo samples in Appendix Table A.2. Since Calonico, Cattaneo and Titiunik (2014b) is

another paper that focuses on inference improvement, we repeat the coverage rates and average lengths of

the 95% local linear CCT robust confidence intervals using the CCT bandwidth selector in Table A.2, for

ease of comparison.

Appendix Table A.2 reveals two patterns. First, the AK and IW procedures do very well in terms of

coverage rates: their CI’s have coverage rates generally higher than CCT.6 At the same time, the length

of the CCT robust CI’s are somewhat shorter than their AK and IW counterparts. The reduction in length

ranges from 8.2% to about 30% for the Lee DGP, and from 20% to about 60% for the Ludwig-Miller DGP.

The fact that the AK and IW CI’s – in comparison to the CCT robust CI’s – have comparable or higher

coverage rates but at the expense of efficiency is to be expected. The AK and IW procedures intend to main-

tain coverage over a specified class of functions. The larger that class of functions is, the more “agnostic”

one can be about the shape of the underlying DGP, leading to longer confidence intervals. Conversely, one

would expect that as that class of functions is assumed to be more restrictive, the CI’s would become shorter.

Cheng, Fan and Marron (1997) describe the class of functions for which local polynomial estimators with

a triangular kernel enjoys minimax properties. This suggests that in practice, there could be cases in which

CCT performs reasonably well, as it does in this case. For nlarge, CCT has 94.6% coverage for the Ludwig-

Miller DGP and has the shortest CI length, and as we see in Tables 3 and 4, the CCT robust CI based on a

higher-order local polynomial regression may lead to further improvements.

5When applying the IW approach to the Lugwig-Miller DGP, we choose the maximum second derivative of the conditional
expectation function over the range of |x|< 0.1. This maximum is higher than that imposed in the AK approach, which is only the
maximum of the second derivatives of the conditional expectation function evaluated on both sides of x = 0.

6Calonico, Cattaneo and Farrell (2016) and Calonico, Cattaneo and Farrell (2018) propose confidence intervals that minimize
the coverage error, which may improve upon those presented in Appendix Table A.2.
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Figure A.1: Conditional Expectation Functions in RDD DGP’s
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Figure A.2: Conditional Expectation Functions in RKD DGP’s
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Figure A.3: Weights for Local Polynomial Estimators: Lee Data, CCT Bandwidth
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Figure A.4: Weights for Local Polynomial Estimators: Ludwig-Miller Data, CCT Bandwidth
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Table A.1: Main Specification of RD Papers Published in Leading Journals

Main Specification Number of Papers 1999-2010 2011-2017

Local constant 11 8 3

Local linear 45 9 36

Local quadratic 6 1 5

Local cubic 5 4 1

Local quartic 2 2 0

Local 7th-order 1 1 0

Local 8th-order 1 0 1

Local but did not mention preferred polynomial 5 0 5

Total local 76 25 51

Global linear 4 1 3

Global quadratic 4 0 4

Global cubic 11 5 6

Global quartic 4 2 2

Global 5th-order 1 0 1

Global 8th-order 1 0 1

Global but did not mention preferred polynomial 1 0 1

Total global 26 8 18

Did not mention preferred specification 8 2 6

Total 110 35 75

Note: Our survey includes empirical RD papers published be-
tween 1999 and 2017 in the following leading journals: Amer-
ican Economic Review, American Economic Journals, Econo-
metrica, Journal of Political Economy, Journal of Business and
Economic Statistics, Quarterly Journal of Economics, Review of
Economic Studies, and Review of Economics and Statistics in our
survey.
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Table A.2: Simulation Statistics for the Armstrong and Kolesár (forthcoming) and Imbens and Wager (forth-
coming) Confidence Intervals

Coverage Rate of 95% CI Average 95% CI Length
AK IW CCT Robust AK IW CCT Robust

Lee DGP

nsmall 0.956 0.976 0.920 0.319 0.267 0.245

nactual 0.962 0.964 0.900 0.110 0.093 0.077

nlarge 0.960 0.957 0.928 0.046 0.038 0.032

Ludwig-Miller DGP

nsmall 0.976 0.932 0.933 0.565 0.425 0.353

nactual 0.973 0.964 0.935 0.228 0.205 0.154

nlarge 0.969 0.941 0.946 0.090 0.082 0.063

12
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